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Abstrak 

Radio bergerak dikarakteristikkan oleh kanal yang bervariasi cepat ( fast time varying),  Detektor 
konvensional yang didesain optimal untuk kanal non fading memiliki unjuk kerja terbatas saat diterapkkan 
di kanal bervariasi cepat. Tulisan ini mengenalkan  detector rekursif untuk sinyal M-ary di kanal komunikasi 
fast time varying. Detektor yang diusulkan ini secara terus-menerus mengestimasi kanal secara langsung 
dalam perhitungan metrik dari fungsi log likehood secara rekursif.  Estimasi kanal dilakukan oleh bentuk 
kovarian  dari pendekatan least square rekursif.  Unjuk kerja detektor dievaluasi dalam bentuk probabilitas 
salah deteksi.  Pengaruh dari pewaktuan dan offset fasa terhadap unjuk kerja detektor dievaluasi 
menggunakan simulasi. Hasil simulasi menunjukkan detektor yang diusulkan ini  mampu  mengakomodasi 
kanal bervariasi cepat (fast time varying)  dengan  unjuk kerja yang memadai.  
 
Kata kunci :  deteksi fast fading, rekursif 

 

Abstract 
          Mobile radio is characterized by a fast time varying channel. Conventional detectors which designed 
optimal for non-fading channel exhibit a limited performance in fast time varying channel. In this paper a 
recursive detector for M-ary signals over fast time varying mobile communication channel is introduced. 
The proposed detector continuously estimates the channel directly within the metric calculation of the log-
likelihood function in a recursive manner. The estimation of the channel is performed by the covariance 
form of the recursive least square approach. The performance of the detector is evaluated in terms of the 
misdetection probability. The effects of timing and phase offsets on the performance of detector are 
examined by simulation. Simulation results show that the proposed detector can accommodate the fast 
time varying channel with adequate performance. 

  
Keywords: fast fading, recursive detection 
  
 
1. Introduction 

Multipath fading has a major effect on the performance of mobile communication 
systems. The time varying nature of the mobile wireless channel causes a limitation in the 
performance of the designed for non-fading channel even at high signal to noise ratio. Then, the 
development of mobile cellular resulted in increasing interest in the study of signal detection in 
the presence of this rapidly time varying environment. If the channel exhibits intersymbol 
interference (ISI) in the received data, adaptive equalizers [1-3], that use adaptive algorithms 
[4], are used to recover the received signal and to remove the ISI. When the channel is rapidly 
varying, tracking these variations becomes a challenging problem and hence the equalizer may 
not be able to track the channel.  

Several articles discuss the problem of detection of M-ary signals [5-8]. In [5] the 
authors derived an exact expression for the symbol error probability (SEP) for coherent 
detection of M-ary PSK signals using array of antennas with optimum combining. They consider 
a Rayleigh flat fading channel. In [6], a low complexity breadth first tree detector, termed 
improved M-algorithm (IMA) is proposed. The authors showed that IMA works well without an 
energy compacting front end prefilter (FEP) even in frequency-selective channels. Moreover, 
the authors propose to make use of the cepstrum to compute the FEP via a minimum phase 
target impulse response. In [7], the effect of power and rate adaptation on the spectral efficiency 
of orthogonal frequency division multiplexing (OFDM) systems using M-ary quadrature 
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amplitude modulation (MQAM) is investigated in the presence of frequency selective and very 
rapidly time-varying fading channels, under power and instantaneous bit error rate (BER) 
constraints. Lower bounds on the maximum spectral efficiency of adaptive OFDM/MQAM 
systems with perfect and imperfect channel state information (CSI) are obtained, together with a 
closed-form expression for the average spectral efficiency of adaptive OFDM systems. In [8], 
the authors developed a computationally efficient algorithm for the Maximum Likelihood (ML) 
sequences estimation (MLSE) of an M-ary Phase Shift keying (M -PSK) signal transmitted over 
a frequency non-selective slow fading channel with an unknown complex amplitude and an 
unknown variance additive white Gaussian noise. The proposed algorithm also provides the ML 
estimates of the complex amplitude and the noise variance that are critical in signal activity 
detection and demodulation in the modern cognitive communication receivers. 

In this paper, such rapidly fading channels are considered, specifically, the channel 
model described in [9, 10, 11, 12] is used. In this model, the time varying channel taps are 
modeled by a finite linear combination of complex exponentials. The basis expansion approach 
of [9, 11,12] is used in this paper and the time varying channel coefficients are expanded into a 
set of basis sequences and expansion parameters. These basis sequences are assumed to be 
known while the expansion parameters are unknown and needs to be identified. In [9], higher 
order statistics are used to estimate the expansion parameters based on minimizing a moment 
matching criterion and use them to estimate the time varying channel coefficients. It is proved 
that identifiably of the channel cannot be achieved from the second order cumulants. It requires 
fourth order cumulant to identify it under the assumption of linear independence on the basis 
sequences. 

In this paper, an adaptive detector structure for detection of M-ary signals over a rapidly 
time varying fading channel is presented. The detector is based on maximum likelihood 
criterion. The channel impulse response is expanded onto a set of basis sequences and a time 
invariant (TI) expansion parameters. The proposed detector continuously estimates the time 
invariant expansion parameters directly within the metric calculation of the log-likelihood 
function. The recursive least square (RLS) approach is used to perform this estimation. The 
performance of the detector is demonstrated in the simulation section. Also, the effects of timing 
and phase offsets are examined by simulation. 

The paper is organized as follows. In Section 2, the proposed detector is derived 
including the system model, recursive evaluation of the ML metric, channel parameter 
estimation and the operation of the proposed detector. In Section 3, the results of the computer 
simulation to demonstrate the performance of the detector are provided. Conclusions are 
provided in Section 4. 
 
 
2. The Proposed Detector 
2.1. System Model 

A data sequence is transmitted over a rapidly time varying channel using one out of M 

signals. The sampled signals at time instant k is denoted by )(kxi ; Mi ...,,2,1 . The discrete 

equivalent (or combined) impulse response of the channel including transmitter filter is denoted 
by ),( lkv  where l represents the channel memory ( 1,...,1,0  Ll ). The unknown channel 

taps are correlated even if the scatters in the physical channel are uncorrelated. The additive 
noise is assumed to be white Gaussian noise. The received signal is filtered and sampled at a 

rate of sf . The problem is formulated as follows. Given the discrete received signal )(kz , the 

detector must decide which signal )(kxi  has been sent where )(kxi  is the sampled 

transmitted signal. That is, the hypotheses iH ; Mi ...,,2,1 , over the observation interval sN
, are given by 
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where L is the channel memory length and )(kw  are independent and identically distributed 
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(i.i.d) complex valued zero mean Gaussian noise samples with known variance 2
n . The 

optimum maximum likelihood (ML) detector chooses the hypothesis iH  with the largest 

likelihood function, but it requires perfect knowledge of the channel time varying coefficients, 
),( lkv . These coefficients are usually modeled as Gaussian random process. However, a more 

precise description of the time variations of the channel coefficients can be provided for the 
multipath channels, which have small number of reflectors. For example, for constant vehicle 
velocity, the mobile radio channel is almost periodically varying when the multipath delays 
change linearly with time due to the carrier modulation inherent in the transmitted signal [9]. Its 
time varying coefficients can be expressed as a combination of exponentials whose frequency 
depends on the carrier frequency and the vehicle speed [11]. In this paper, we consider the 
channels, which their time varying coefficients ),( lkv  can be approximated by a linear 

combination of a finite number of basis sequences )(kfn :   

 


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N

n
nnl kfklv

1

)(),(                      (2) 

 

where nl  are non-random expansion parameters and )( kfn  are basis sequences. For fast 

mobile radio channels, these basis sequences are expressed as [9, 12]: 
 

}exp{)( kjkf nn                                                   (3) 

 

where n  are some frequencies; Nn ...,,2,1 . These frequencies are assumed to be known 

and estimation of these frequencies are found in [9]. Practical values are used for these basis 
sequences in the simulation section.  
 
2.2. Recursive Evaluation of the ML Metric 

In this subsection, the log-likelihood metric for the received signal is derived and 
evaluated recursively. Using (1), (2), and (3), )(kz can be expressed as: 
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Mi ...,,2,1                                                 (4)        

 
Let us define the following vectors and matrices: 
 

T
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and 
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where i is referred to the hypothesized signal. Let the coefficients l  be assembled into the 

1)(  LN unknown vector Ψ : 

                                                      
TT

L
TT 

 ]...[ 110Ψ                (7) 

 
 



                 ISSN: 1693-6930 

TELKOMNIKA  Vol. 11, No. 1, March 2013 :  147 – 154 

150

and also  
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where the superscript T denotes matrix transposition. Using the above definitions, we can 
rewrite (4) in the following representation; 
 

 )()( )( kwkz i
k  ΨΧ                                (9) 

 

Let T
sNzzz  )](...,),2(),1([z denotes the noisy received signal vector and 
T

siiii Nxxx  )](...,),2(),1([x denotes the ith transmitted signal vector. Since the 

observation noise is assumed to be white Gaussian, then the probability density function (PDF) 

of the received signal vector z under hypothesis iH , conditioned on the channel parameters 

vector Ψ , can be written as: 
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For equi-probable messages, the relevant conditional log-likelihood function (LLF) 

under hypothesis iH  may be written as: 
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For a given Ψ , the optimum ML detector chooses the hypothesis Ĥ  that maximizes 

)/;( ΨziHf  or, equivalently,  minimizes )/;( ΨziN H
s

 that is: 
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           (12) 

 
An estimate of Ψ  is required to evaluate (12). The evaluation of (12) and the estimation 

of Ψ  can be performed recursively in time as follows: Let 
)(ˆ i

kΨ  denotes the estimation of the 

channel parameters vector under hypothesis i and at time step k. Then by substitution of 
)(ˆ i

kΨ  

into (11), we have the log-likelihood function )ˆ/;( )(i
kiN H

s
Ψz . In fact, if the equation: 
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is defined for sNm ...,,2,1 , we easily obtain the recursion 
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where )ˆ/( )(
1

i
km Ψz  represents the evaluation of the LLF within the interval 1...,,2,1  mk . 

This formula suggests a recursive solution for the minimization of (11). A separate channel 
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parameters vector estimate 
)(ˆ i

kΨ  is created for each hypothesis using the observations and the 

hypothesized signal.  
 
2.3. Estimation of the Channel Parameters Vector  
Possible approaches to a sample-by-sample estimation of the channel parameters vector are 
gradient based methods (like LMS) and recursive least square based methods. It is important to 
observe that the true channel parameters vector is time invariant, so the task of the adaptive 
algorithm in the proposed approach is to converge to the channel parameters as opposed to 
tracking them. The covariance form of the least square (CRLS) approach [12] is chosen to 
perform this estimation due to its fast convergence. Applying this form results in the following 
algorithm:  
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is the weighting vector and,  
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is the estimation error covariance matrix. The factor k  is a weighting factor, which is set to 

one for equal weights. It is noted that, 
)(ˆ i

kΨ  is the estimate of the channel parameters vector at 

time k under hypothesis i and the term 
)(
1

)( ˆ i
k

Ti
k 

 Ψh  in (15) is a prediction of the actual 

measurement )(kz  under hypothesis i. The above algorithm updates 
)(ˆ i

kΨ  by iteratively adding 

an adjustment term. The adjustment term is given by a vector of weights )(i
kK , which is 

multiplied by the error 
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 Ψh ] to determine the parameter change. The value of 

this error is small when there is a matching between the observation z(k) and the term 
)(
1

)( ˆ i
k

Ti
k 

 Ψh  (i.e. when the observation z(k) contains the correct hypothesis) and it is large when 

there is a mismatch between them. Since the CPV is time invariant, the estimation algorithm is 

initialized using an initial guess 
)(

0
ˆ iΨ  for the CPV or using 
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given by: LN
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0  , where   is a large positive constant (typical value: 210 ) and LNI  

is the identity matrix with dimension )()( LNLN  .   

 
2.4. Operation of the Proposed Detector 
 The structure of the detector is shown in Figure.1. As explained above, the decision of 

the detector is based on the evaluation of the function, )ˆ/;( )(i
kiNi Hq

s
Ψz , then the 

detector executes the following algorithm for each hypothesis ; Mi ...,,2,1  : 

(i) Start with an initial estimate for the channel parameters vector 
)(

0
ˆ iΨ . 

(ii) Use the observation and the hypothesized signal to find )(
1

ˆ iΨ . 

(iii) Substitute )(
1

ˆ iΨ  in (13) and then find )ˆ/;( )(
11
i

iH Ψz . 
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(iv) Update the estimate of the channel parameters vector to find )(
2

ˆ iΨ  and then use it to 

evaluate  )ˆ/;( )(
22
i

iH Ψz using (14). 

(v) Repeat steps (2) to (4) until all the data samples have been processed  (i.e. when sNk  ) 

and then obtain iq . 

(vi) Compare among iq ; i=1, 2,…, M and determine i that corresponds to the minimum value 

of q.    
 
 

)1(ˆ
kΨ

)2(ˆ
kA

)(ˆ M
kΨ

1q

2q

Mq

Ĥ

 
 
Figure 1. Structure of the proposed adaptive detector for the rapidly time varying fading channel 
 
 
3. Computer Simulations and Results 

In this section, the performance of the detector is evaluated for the mobile radio-fading 
channel defined in (2) using Mont Carlo simulation. The channel has two time varying taps, 

each one is a linear combination of three basis sequences denoted by 1,1 kf , 

 60/exp,2 kjf k  , and  100/exp,3 kjf k  . These bases simulate a realistic situation 

for a 900 MHz carrier frequency, bit rate around 20 Kb/s and a vehicle speed of 100 Km/h. The 

values of expansion parameters nl  are given in Table I [9] are chosen so that the fading 

channel passes through the minimum and non-minimum phase regions.  
 
 

Table 1. Basis Expansion Parameters [5] 
nl  1n  2n  3n  

0l  1 j 2 

1l  1 0.5 -j 

 
 

The input to the channel is a QPSK signal. The generated signal has independent and 
identically distributed symbols. The frame length is 512 samples. A white Gaussian noise is 
simulated and added to the signal at the input of the detector. The signal to noise ratio is 

defined as SNR=10log ( ob NE / ) where 2/oN  is the noise power spectral density and bE  is 

the energy per bit. It is assumed that no phase and time offsets in the carrier. However, the 
effects of these offsets are studied in this section.  

The performance comparison among the proposed detector, the effect of model mis-
match and the reference detector is evaluated in terms of misdetection probability versus signal 
to noise ratio (SNR) at the input of the detector. The results of comparison are shown in 
Figure.2. This figure shows that the proposed detector has adequate performance and allows 
an effective tracking of the channel. The lower curve in Figure.2 represents the unrealistic case 
where the channel is assumed to be known to the detector. Hence, this curve can be 
considered as a lower bound or a reference detector for comparison purposes of the other 
detectors.  

Figure 2 also shows that the degradation in the misdetection probability that results 
when an incorrect channel model is adopted. In this case, a random disturbance is added to the 
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real and imaginary parts of the channel time varying coefficients 



N

n
lnnl kekfklv

1

)()(),(  . 

The disturbance )(kel  is generated as an i.i.d. Gaussian random variables with standard 

deviation 0.2. Then, the proposed algorithm is applied and the misdetection probability is 
evaluated. The simulated results indicate that the anticipated increase in misdetection 
probability under this mismatch condition is actually not significant at low SNR. This is because 
the additive noise dominated the performance at low range of SNR. As SNR increases, the 
influence of the additive noise decreases, and the model mis-match becomes the dominant 
source of degradation, causing deterioration in misdetection probability.  
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Figure 2. Probability of misdetection for different detectors 
 
 

Figures 3 and 4 demonstrate the effects of timing and phase offsets on the performance 
of the detector respectively. The figures are plotted for SNR=0, 5, and 9 dB. These figures 
shows that the detector is able to detect the signal reliably when phase or timing offset is small. 
When phase or timing offset increases, the detector performance degrades rapidly. The reason 
for this degradation is that: the increase in these offsets causes increase in the residual error in 

estimation of the channel parameters vector kΨ  (since the estimation of kΨ  depends on the 

observation which is shifted in time or phase) and this is introduces an error in the log-likelihood 
metric calculation given by (13), accordingly, the misdetection probability degrades rapidly.  
Figures 3 and 4 also show that, there is a range in which the effect of phase or time offset can 
be neglected and the misdetection probability in this range is small. This range is shown in 
these figures for SNR=9 dB. This range depends on the SNR (it increases as the SNR 

increases) and it is up to Tto / =0.4 for the timing offset and 0.5 rad. for phase offset, where T 

is the symbol duration.   
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Figure 3. Effect of timing offset on the performance of the detector for different signal to noise 
ratios 
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Figure 4. Effect of phase offset on the performance of the detector for different signal to noise 
ratios 

 
 
4. Conclusion 

In this paper, a recursive detector for detecting M-ary signals over a rapidly time varying 
mobile communication channel has been presented. The channel has been expanded into a set 
of basis sequences and time invariant expansion parameters. This expansion idea provides a 
helpful tool for addressing problems of such channels. The time invariant expansion parameters 
of the channel have been estimated continuously and directly within the metric calculation of the 
log-likelihood function in a recursive manner. The performance of the detector has been 
evaluated in terms of the misdetection probability. The detector provides adequate performance 
for this type of channel. Also, the effects of timing and phase offsets on the performance of 
detector have been studied.  
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