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Abstract 
 One of the main issues of concern in financial mathematics has been a viable method for 

obtaining analytical solutions of the Black-Scholes model associated with Arithmetic Asian Option (AAO). 
In this paper, a proposed semi-analytical technique: Adomian Decomposition Method (ADM) is applied for 
the first time, for analytical solution of a continuous arithmetic Asian option model. The ADM gives the 
solution in explicit form with few iterations. The computational work involved is less. However, high level of 
accuracy is not neglected. The obtained solution conforms with those of Rogers and Shi (J. of Applied 
Probability 32: 1995, 1077-1088), and Elshegmani and Ahmad (ScienceAsia, 39S: 2013, 67–69). Thus, the 
proposed method is highly recommended for analytical solution of other versions of Asian option pricing 
models such as the geometric form for puts and calls, even in their time-fractional forms. 
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1. Introduction 

In financial settings, option contracts are great tools for hedging and speculative 
leveraging. Thus, Asian option has its payoff being determined specifically by the corresponding 
underlying asset for a prescribed period of time (not on the price of the underlying). This makes 
it a unique form of option contract over other forms. Asian options are classified as path 
dependent [1-8] when compared with the other forms of options in practice such as lookback, 
American, European among others. Asian options are basically of two forms namely: the 
Arithmetic Asian Option (AAO), and the Geometric Asian Option (GAO) which is distinguished 
for a closed form solution. 

However, obtaining closed form solution of the Arithmetic Asian Option has been a 
difficult task in the theory of option pricing [9-10]. This issue of concern has attracted the 
attention of so many authors and researchers leading to the development of solution techniques 
to that effect [11-17]. Meanwhile, other analytical, numerical, approximate or semi-analytical 
techniques of interest related to this study are those of [18-29]. Despite all these approaches, 
there is vital need for a more effective and efficient methods of solution which may be 
numerical, analytical or semi-numerical.  

In this work, the Adomian Decomposition Method (ADM) is proposed as a  
semi-analytical method (for the first time in literature), for obtaining analytical solution of a 
continuous arithmetic Asian model for option pricing. The remaining parts of the paper are 
organized as follows: a brief remark on pricing model for Asian option is presented in section 2. 
The proposed ADM as method of solution is presented in section number 3; application and 
illustrative examples are presented in section 4. Lastly, concluding remark is contained in 
section 5. 
 
 
2. The Pricing Model for Asian Option  

Let the stock price at time t , denoted as  S t  assumed to follow a Geometric 

(Exponential) Brownian Motion (GBM) be governed by the stochastic differential equation (or 
dynamic) of the form: 
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         , ,dS t S t rdt dW t t o          (1) 

 
with the following defined parameters:   a volatility (or percentage) coefficient, and a mean rate 

of return, r , where  ,  0W t t T   is
 
a standard Wiener process. Then the payoff function for 

an Asian option [29-31] having an Arithmetic Average Strike (AAS) is defined and  
denoted by: 
 

     
0

1
0,  

T

Q T S T S d
T

 


 

  
 

 . (2) 

 

The price of the option at 0 t T   regarded as a risk-neutral framework for option pricing 

formulation is denoted as: 
 

       exp tQ t r T t Q T F     (3) 

 

where      represents mathematical operator in expectation form and tF  a filtration. 

The payoff function,  Q T  is path-dependent. So, the introduction of the following 

stochastic process [27]: 
 

      0

0

,  0
T

I t S d S S 


 


   (4) 

where the function  I t  is regarded as the strike price running sum. Whence, the associated 

model for Asian call option price is: 
 

2
2 2

2

1
0.

2

Q Q Q Q
S rS S rQ

t S S I


   
    

   
  (5) 

 

Model (5) is solved by  , ,Q Q S I t  when considering the continuous form of arithmetic 

average strike. At 1  , (5) acts as a particular case of the notable time-fractional  

Black-Scholes option pricing model,  besides the averaging term: 
Q

S
I

 
 

 
. To obtain the 

solution of this model, development and adoption of numerical, approximate or semi-analytical 
methods will be considered [21-23]. It is obvious that (5) is a 3-dimensional model, so it will give 
computational problem. Therefore, the following transformation variables are introduced to 
reduce it to ta lower dimensional form [2, 24]: 
 

   , , , ,

.

Q S I t Sh t

I
S k

T









 


  (6) 

 

As a result, (5) becomes: 
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   
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  
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  

   
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  (7) 

 
Show in (7) is now in 2-dimensional form. Through the relation in (6), the solution shall be 
applied to obtain the price of the Asian option. 
 
 
3. The Analysis of the Adomian Decomposition Method [20, 21, 23] 

Consider a general nonlinear nonhomogeneous partial differential equation of the form: 
 

       , , , ,H x t R x t N x t x t        (8) 

 

where H  is a differential operator (of first order ) in t , the differential operator, R  is regarded 

as linear, the differential operator, N  signifies the nonlinear term, while the source term is 

denoted as  ,x t . Suppose    L H    is invertible such that    1
t

t

o

L ds     exists,    

then (8) becomes: 
 

        , , , , .L x t x t R x t N x t        (9) 

 

So, operating  1
tL   on both sides of (9) gives:  

 

            1 1, , , ,t tx t x L x t L R x t N x t           (10) 

 

where  x  represents the term arising from the application of the initial conditions  

depicted as: 
 

 
0

,

initial conditions.

n
i

i
i

i

x p t

p





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
 

  (11) 

 

By decomposition method, the solution,  ,x t  is expressed as a sum of infinite series       

given as: 
 

   
0

, ,n
n

x t x t 




   (12) 

 

where the nonlinear term is defined as: 
 

  
0

, .m
m

N x t A




      (13) 

 

 In (13) the Adomian polynomials,  mA  are defined as follows: 
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 ,                    (14) 

 
thus, using (12) and (13) in (10) gives: 

 

        1 1

0 0 0

, , , .m t t m m
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x t x L h x t L N A R x t  
  

 

  
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     (15) 

Hence,  ,t x  as the required solution is obtained through the recursive system (relation): 
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     
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  (16) 

 

and  ,t x  is finally given as follows: 

 

 
0

, lim m
m

m

x t 





 
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 
 .  (17) 

 
 
4. Applications and Illustrative examples  

Here, the analytical solution(s) are considered based on the proposed ADM.  
Consider (5) via (6, 7) in the following form: 

 

   
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In an operator form, (18) becomes: 
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,  (19) 

 

So, operating  1
tL   on both sides of (19) gives:  

 

   1 1 2 2 11 1
.
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      1 2 2 11 1
,
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By decomposing  ,h t , we have: 
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Thus,  
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Therefore, the recursive relation in (23) yields: 
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The following are obtained by subjecting (18) to: 
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with a general recursive relation: 

 

11 1
, 1.

!

k k rT
kh r r t e k

k T
   

    
 

  (27) 
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Hence, 
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Meanwhile, from (6) we recall that: 
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Show in (29) gives the required solution of (5) (in analytical form) corresponding to the 
continuous arithmetic Asian option (CAAO) pricing model. 

 
 

5. Conclusion 
In this paper, we have successfully applied a proposed semi-analytical method: 

Adomian Decomposition Method (ADM) for obtaining analytical solution of the continuous 
arithmetic Asian option model. The application of ADM to the CAAO pricing model is done for 
the first time. The method involved less computational work without compromising the level of 
accuracy. The works of Rogers & Shi [1], and Elshegmani & Ahmad [2] serve as yardsticks to 
this current work.The proposed semi-analytical method is highly recommended for analytical 
solution of other versions of Asian option pricing models such as the geometric form for puts 
and calls. In addition, other financial PDEs resulting from stochastic dynamics can be 
considered via this approach. Future related work can involve the use of coupled ADM, 
restarted ADM, and the Laplace-Sumudu ADM (LSADM) for accuracy and speed comparison. 
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