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Abstract 
 Image denoising and improvement are essential processes in many underwater applications. 

Various scientific studies, including marine science and territorial defence, require underwater exploration. 
When it occurs underwater, noise power spectral density is inconsistent within a certain range of 
frequency, and the noise autocorrelation function is not a delta function. Therefore, underwater noise is 
characterised as coloured noise. In this study, a novel image denoising technique is proposed using 
discrete wavelet transform with different basis functions and a whitening filter, which converts coloured 
noise characteristics to white noise prior to the denoising process. Results of the proposed method depend 
on the following performance measures: peak signal-to-noise ratio (PSNR) and mean squared error. The 
results of different wavelet bases, such as Debauchies, biorthogonal and symlet, indicate that the 
denoising process that uses a pre-whitening filter produces more prominent images and better PSNR 
values than other methods. 
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1. Introduction 

Efficient underwater image denoising is a critical aspect for many applications [1]. 
Underwater images present two main problems: light scattering that alters light path direction 
and colour change. The basic processes in underwater light propagation are scattering and 
absorption. Underwater noise generally originates from man-made (e.g. shipping and machinery 
sounds) and natural (e.g. wind, seismic and rain) sources. Underwater noise reduces image 
quality [1, 2], and denoising has to be applied to improve it [3]. Underwater sound attenuation is 

dependent on frequency. Consequently, power spectral density  for ambient noise is 
defined as coloured [4]. Many image denoising techniques are described in [5-9]. A method 
based on adaptive wavelet with adaptive threshold selection was suggested in [5] to overcome 
the underwater image denoising problem. Assume that an underwater image has a small  
signal-to-noise ratio (SNR) and image quality is poor. The simulation results show that the 
proposed method successfully eliminates noise, improves the peak SNR (PSNR) output of the 
image and produces a high-quality image. Light is repeatedly deflected and reflected by existing 
particles in the water due to the light scattering phenomenon, which degrades the visibility and 
contrast of underwater images. Therefore, underwater images exhibit poor quality. To process 
images further, wavelet transform and Weber’s law were proposed in [8]. Firstly, several  
pre-processing methodologies were conducted prior to wavelet denoising thresholding. Then, 
Weber’s law was used for image enhancement along with wavelet transform. Consequently, the 
recovered images were enhanced and the noise level was reduced. In the current study, a novel 
image denoising method is proposed in the presence of underwater noise using a pre-whitening 
filter and discrete wavelet transform (DWT) with single-level estimation. 
 
 
2. Characteristics of Ambient Noise 

The characteristics of underwater noise in seas have been discussed extensively [10]. 
Such noise has four components: turbulence, shipping, wind and thermal noises. Each 
component occupies a certain frequency band of spectrum. The PSD of each component is 
expressed as [11-13].  
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𝑁𝑡(𝑓) = 17 − log 𝑓 (1) 
 

𝑁𝑠(𝑓) = 40 + 20(𝑠 − 5) + 26𝑙𝑜𝑔𝑓 − 60log⁡(𝑓 + 0.03) (2) 
 

𝑁𝑤(𝑓) = 50 + 7.5𝑣𝑚
1

2 + 20𝑙𝑜𝑔𝑓 − 40log⁡(𝑓 + 0.4)   (3) 

 
𝑁𝑡ℎ(𝑓) = −15 + 20𝑙𝑜𝑔𝑓 (4) 
 

where f represents the frequency in KHz. Therefore, the total PSD of underwater noise for a 
given frequency f (kHz) is 

 
⁡⁡𝑆𝑥𝑥(𝑓) = 𝑁𝑡(𝑓) + 𝑁𝑠(𝑓) + 𝑁𝑤(𝑓) + 𝑁𝑡ℎ(𝑓)  (5) 

 
Figure 1 presents the experimental noise PSD in deep water under various activities 

conditions for shipping with a fixed speed of wind of (3.6 m/s). Each noise source is dominant in 
certain frequency bands, as indicated in Table 1.  

 
 

Table 1. UWAN Band 
Band Type 

0.1Hz - 10Hz Turbulence noise 
10Hz - 200Hz Shipping noise 

0.2 kHz - 100 kHz Wind noise 
above 100 kHz Thermal noise 

 
 

3. Image Model 
Noise interference is a common problem in digital communication and image 

processing. An underwater noise model for image denoising in an additive coloured noise 
channel is presented in this section. Numerous applications assume that a received image can 
be expressed as (6): 

 
𝑥(𝑛) = 𝑠(𝑛) + 𝑣(𝑛) (6) 

 
where 𝑠(𝑛) is the original image and 𝑣(𝑛) denotes underwater noise. Hence, denoising aims to 

eliminate the corruption degree of 𝑠(𝑛) caused by 𝑣(𝑛). The power spectrum and 
autocorrelation of additive white Gaussian noise (AWGN) are expressed as (7, 8) [14]: 
 

𝑅𝑣𝑣⁡(𝑚) ⁡= ⁡𝐸⁡{𝑣(𝑚)𝑣(𝑚⁡ + ⁡𝑘)} ⁡= 𝜎𝑣
2⁡𝛿(𝑚) (7) 

  

𝑠𝑣𝑣[𝑒
𝑗2𝜋𝑓] = 𝐷𝐹𝑇𝑚→𝑓{𝑅𝑣𝑣(𝑘)} = ⁡𝜎𝑣

2 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡
−𝑓𝑠
2

≤ 𝑓 ≤
𝑓𝑠
2

 (8) 

 
The PSD of AWGN remains constant across the entire frequency range, in which all 

ranges of frequencies have a magnitude of⁡σv
2. The probability distribution function 𝜌𝑣(𝑣) for 

AWGN is specified by [15] 
 

𝜌𝑣(𝑣) =
1

𝜎𝑣√2𝜋
𝑒
−
𝑣2

2𝜎𝑣
2
 (9) 

 
where 𝜎𝑣 represents the standard deviation. With regard to autocorrelation functions, the delta 
function indicates that adjacent samples are independent. Therefore, observed samples are 
considered independent and identically distributed.  

Underwater noise is dependent on frequency [16, 17]; hence, the assumption that it is 
AWGN is invalid, and instead, it is suitably modelled as coloured noise [1, 2, 18]. The PSD of 
coloured noise is defined as [19, 20] 
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𝑆𝑉𝑉(𝑒
𝑗2𝜋𝑓) = ⁡⁡

1

𝑓𝛽
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝛽 > 0,

−𝑓𝑠
2

≤ 𝑓 ≤
𝑓𝑠
2

  (10) 

 
However, the⁡𝑅𝑣𝑣[𝑚] of coloured noise is not like a delta function, but, it is takes the 

formula of a 𝑠𝑖𝑛𝑐(⁡) function [14, 19]. In contrast to AWGN, noise samples are correlated [20]. 
 
 
4. Whitening Filter and Inverse Whitening Filter 

A linear time-invariant whitening filter can be used to transform coloured noise into 
white noise [14, 21]. Through the transfer function 𝐻(𝑧), the prediction error filter (PEF) is used 
for whitening purposes [20, 22]. The output of PEF is determined as the difference between the 
actual and estimated sequences of the linear predictor. The one-step-forward predictor filter is 
expressed as 

 

�̀�(𝑛) = −∑𝑎𝑝(𝜆)𝑥(𝑛 − 𝜆)

𝑝

𝜆=1

 (11) 

 
where p shows the length of the designed filter. ⁡𝑎𝑝(𝑛) represents the coefficient of filter. The 

forward prediction error is defined as [20] 
 

𝑒𝑝(𝑛) = 𝑥(𝑛) − �̀�(𝑛) = 𝑥(𝑛) +∑𝑎𝑝(𝜆)𝑥(𝑛 − 𝜆)

𝑝

𝜆=1

 (12) 

 
The filter coefficients can be estimated by minimising mean squared error (MSE). The transfer 
function of a filter can then be defined as 

 

𝐻𝑝(𝑧) =
𝐸𝑝(𝑧)

𝑋(𝑧)
= 1 + 𝑎1𝑧

−1 + 𝑎2𝑧
−2 +⋯+ 𝑎𝑝𝑧

−𝑝 (13) 

 
If the order of the PEF is suitably large, then the output of filter becomes white noise [20].  

The output of PEF filter  denotes the process of convolution between a noisy 

image and the impulse response of filter used in the whitening process . 
Therefore, the output of PEF is a coloured version of the original image in white noise. 

 
𝑥𝑤(𝑛) = 𝑥(𝑛) ∗ ℎ𝑤(𝑛) = 𝑠(𝑛) ∗ ℎ𝑤(𝑛) + 𝑣(𝑛) ∗ ℎ𝑤(𝑛) (14) 
 

After the filter coefficients are determined, the noise term 𝑣(𝑛) ∗ ℎ𝑤(𝑛) is minimised through a 
denoising process, thereby producing a clean version of the transformed image as follows: 

 
�̂�𝑤(𝑛) = 𝑠(𝑛) ∗ ℎ𝑤(𝑛) (15) 
 
An inverse whitening filter (IWF) can be used to recover the original image [23]. ℎ𝐼𝑊𝐹(𝑛) 

denotes the impulse response of the IWF. The recovered image is 
 
�̂�(𝑛) = ⁡ �̂�𝑤(𝑛) ∗ ℎ𝐼𝑊𝐹(𝑛) = 𝑠(𝑛) ∗ ℎ𝑤(𝑛) ∗ ⁡ℎ𝐼𝑊𝐹(𝑛) (16) 

 

 represents the relationship between the whitening and inverse whitening 
filters. The image recovered in the z-domain can be defined as 
 

�̂�(𝑧) = 𝑆(𝑧). 𝐻𝑃(𝑧)⁡. 𝐻𝐼𝑊𝐹(𝑧) = 𝑆(𝑧) (17) 

 
The previously described overall process is illustrated in Figure 1. 
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Figure 1. Overall diagram of the denoising method that uses whitening and pre-whitening 
processes. 

 
 
5. Image Denoising 

Wavelets are used in image processing for sample edge detection, watermarking, 
compression, denoising and coding of interesting features for subsequent classification [24, 25]. 
The following subsections discuss image denoising by thresholding the DWT coefficients. 
 
5.1. DWT of an Image Data 

An image is presented as a 2D array of coefficients. Each coefficient represents the 
brightness degree at that point. Most herbal photographs exhibit smooth colouration variations 
with excellent details represented as sharp edges among easy versions. Clean variations in 
colouration can be strictly labelled as low-frequency versions, whereas pointy variations can be 
labelled as excessive-frequency versions. The low frequency components  
(i.e. smooth versions) establish the base of a photograph, whereas the  
excessive-frequency components (i.e. the edges that provide the details) are uploaded upon the 
low-frequency components to refine the image, thereby producing an in-depth image. Therefore, 
the easy versions are more important than the details. Numerous methods can be used to 
distinguish between easy variations and photograph information. One example of these 
methods is picture decomposition via DWT remodelling. The different decomposition levels of 
DWT are shown in Figure 2. 

 
 

 
 

Figure 2. DWT decomposition levels 
 
 

5.2. The Inverse DWT of an Image 
Different classes of data are collected into a reconstructed image by using reverse 

wavelet transform. A pair of high- and low-pass filters is also used during the reconstruction 
process. This pair of filters is referred to as the synthesis filter pair. The filtering procedure is 
simply the opposite of transformation; that is, the procedure starts from the highest level. The 
filters are firstly applied column-wise and then row-wise level by level until the lowest level is 
reached. 

 
 

6. Proposed Method 
The following steps describe the image denoising procedure that uses a pre-whitening 

filter. 
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1) The pre-whitening process is performed on a noisy image using PEF to convert coloured 
noise to white noise. 

2) The DWT of a noisy image is computed. 
3) Noise variance is estimated by using the following robust median estimator: 
4)  

𝜎𝑣 =
𝑚𝑒𝑑𝑖𝑎𝑛(|𝑋𝐷(𝑛, 𝑘)|)

0.6745
 (18) 

 
where 𝑋𝐷(𝑛, 𝑘) represents all the coefficients of the wavelet detail in level k.  

5) A soft threshold is applied to the sub-band coefficients for each sub-band, except for the  
low-pass or approximation sub-band.  

6)  

𝑋𝐷,𝛾(𝑛, 𝑘) = {
𝑠𝑔𝑛(𝑋𝐷(𝑛, 𝑘))(|𝑋𝐷(𝑛, 𝑘)| − 𝛾𝑘)⁡⁡⁡⁡⁡⁡𝑖𝑓|𝑋𝐷(𝑛, 𝑘)| > 𝛾𝑘
0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑖𝑓|𝑋𝐷(𝑛, 𝑘)| ≤ 𝛾𝑘

 (19) 

 
where 𝛾𝑘 denotes the threshold value in level k, and 𝑋𝐷,𝛾(𝑛, 𝑘) represents the wavelet detail 

coefficients after the thresholding process in level k.  
7) The image is reconstructed by applying inverse DWT to obtain the denoised image. Figure 3 

shows the data flow diagram of the image denoising process.  
 
 

 
 
Figure. 3 Data flow diagram of image denoising using a pre-whitening filter. 
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6.1. Performance Measures 
Common measurement parameters for image reliability include mean absolute error, 

normalized MSE (NMSE), PSNR and MSE [26]. An SNR over 40 dB provides excellent image 
quality that is close to that of the original image; an SNR of 30–40 dB typically produces good 
image quality with acceptable distortion; an SNR of 20–30 dB presents poor image quality an 
SNR below 20 dB generates an unacceptable image [27]. 

The calculation methods of PSNR and NMSE [28] are presented as follows: 
 

PSNR = 10⁡𝑙𝑜𝑔10
2552

𝑀𝑆𝐸
 (20) 

 
where MSE is the MSE between the original image (𝑥) and the denoised image (�̂�) with  
size M×N: 
 

MSE =
1

𝑀 ∗ 𝑁
∑∑[𝑥(𝑖, 𝑗) − 𝜘(𝑖, 𝑗)]2

𝑁

𝑓=1

𝑀

𝑖=1

⁡ (21) 

 
 
7. Results and Discussion 

MATLAB is used as the experimental tool for simulation, and simulation experiments 
are performed on a diver image to confirm the validity of the algorithm. The simulations are 
achieved at PSNR ranging from 30 dB to 60 dB by changing noise power from 0 dB to 15 dB. 
The applied order of the whitening filter is 10. Different denoising wavelet biases  
(i.e. Debauchies, biorthogonal 1.5 and symlet) are tested on an image with underwater noise via 
numerical simulation. As shown in Figure 4, soft thresholding and four decomposition levels are 
used. 

Tables 2, 3 and 4 show the performance of the proposed method on various noise 
power based on the Debauchies, symlet and biorthogonal wavelet biases, respectively. The 
PSNR and MSE values are calculated based on each noise power value. 
 
 

Table 2. Performance Results of PSNR and MSE on Diver Image Based on  
Debauchies Wavelet Bias 

Noise power (db) PSNR MSE 

0 58.7275 0.0878 
3 53.1670 0.3161 
5 50.0854 0.6426 
11 39.9653 6.6062 
15 30.2530 61.8279 

 

 
 

Table 3. Performance Results of PSNR and MSE on Diver Image Based on  
Symlet Wavelet Bias 

Noise power (db) PSNR MSE 

0 58.8266 0.0859 
3 53.3248 0.3048 
5 50.0299 0.6509 
10 40.0077 6.5420 
15 30.0591 64.6499 

 

 
 

Table 4. Performance Results of PSNR and MSE on Diver Image Based on Biorthogonal 
Wavelet Bias 

Noise power (db) PSNR MSE 

0 58.7560 0.0873 
3 53.4219 0.2981 
5 50.2130 0.6240 
10 39.7970 6.8672 
15 30.0840 64.2804 
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Biases type Noisy image De-noise image 
PSNR 
(dB) 

Sym3 

  

50.02 dB 

Sym3 

  

30.05dB 

𝑑𝑏6 

  

53.167 dB 

𝑑𝑏6 

  

30.253 dB 

Biorthogona
l 1.5 

  

53.421 dB 

Biorthogona
l 1.5 

  

30.084 dB 

 

Figure. 4 Simulation results on diver image using different wavelet biases. 
 
 

8. Conclusion 
Underwater noise is mainly characterised as non-white and non-Gaussian noise. 

Therefore, traditional methods used for image denoising using wavelet transform underwater 
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are inefficient because these methods use only a single level for noise variance estimation and 
then apply it to other levels. However, noise variance at each level should be independently 
estimated in coloured noise. The traditional wavelet denoising method can be efficiently used 
with PSNR and MSE within an acceptable range by using a pre-whitening filter that converts 
underwater noise to white noise, as demonstrated by the results.  
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