
TELKOMNIKA, Vol.11, No.2, June 2013, pp. 381~392
ISSN: 1693-6930
accredited by DGHE (DIKTI), Decree No: 51/Dikti/Kep/2010  381

Received December 30, 2012; Revised March 12, 2013; Accepted March 25, 2013

On the Security of NMAC and Its Variants

Fanbao Liu1, Changxiang Shen2, Tao Xie3, Dengguo Feng4

1School of Computer, National University of Defense Technology, Changsha, 410073, Hunan, P. R. China
2School of Computer, Beijing University of Technology, Beijing, 100124, P. R. China

3The Center for Soft-Computing and Cryptology, NUDT, Changsha, 410073, Hunan, P. R. China
4State Key Lab of Information Security, Chinese Academy of Sciences, Beijing, P. R. China

e-mail: liufanbao@yahoo.com.cn1

Abstrak
Berdasarkan pada tiga pendekatan konstruksi awal MAC(Message Authentication Code), Kami

mengusulkan dan melakukan analisis terhadap beberapa varian dari NMAC. Kami mengusulkan
beberapa pemulihan serangan kunci pada varian NMAC tersebut, sebagai contoh, kita dapat memulihkan
kunci dalam yang ekuivalen dari NMAC pada sejumlah O(2n/2) operasi MAC, padasetting kunci yang
berhubungan. Kami mengusulkan NMAC-E, suatu varian NMAC dengan secret envelope, untuk mencapai
proses yang lebih efisien dan tanpa kehilangan pada sisi sekuriti, yang hanya membutuhkan satu
panggilan pada fungsi hash yang mendasari, bukan pada dua sperti yang ada pada HMAC.

Kata kunci: NMAC, keying hash function, equivalent key recovery, MAC forgery, birthday attack

Abstract
Based on the three earlier MAC (Message Authentication Code) construction approaches, we

propose and analyze some variants of NMAC. We propose some key recovery attacks to these NMAC
variants, for example, we can recover the equivalent inner key of NMAC in about O(2n/2) MAC
operations, in a related key setting. We propose NMAC-E, a variant of NMAC with secret envelop, to
achieve more process efficiency and no loss of security, which needs only one call to the underlying
hash function, instead of two invocations in HMAC.

Keywords: NMAC, keying hash function, equivalent key recovery, MAC forgery, birthday attack

1. Introduction
HMAC (Hash-based Message Authentication Code) [2][3], a derivative of NMAC

(Nested Message Authentication Code), is a practically and commonly used, widely
standardized message authentication code (MAC) construction. HMAC has two advantages.
First, HMAC can make use of current hash functions, the most widely used ones are based
on Merkle- Damg˚ard construction [5][14], without modification. Second, it is provable secure
under two assumptions that the keyed compression function of the underlying hash function
and the key derivation function in HMAC are pseudo random functions (PRFs) [2].

After some prevalent iterated hash functions were broken [10][23][24][25][27], the
security of NMAC and HMAC instantiated with those hash functions were analyzed [4][
7][21][26], which emphasized that NMAC and HMAC instantiated with broken hash
functions are weak.

There are mainly three kinds of approaches to construct MAC algorithms by
keying hash functions in early days: secret prefix, secret suffix and secret envelop approaches
[20]. The secret prefix approach prepends a secret key K to the message M before hashing
computation, which is the basic design unit of NMAC and HMAC. The secret suffix approach
appends a secret key K to the message M before hashing computation. The secret envelop
approach, involving two keys, prepends a secret key K1 and appends a secret key K2 to
the message M, respectively, before hashing computation. Based on these approaches and
different key distributions, we propose some NMAC variants (also are HMAC variants), and
analyze their security, by checking whether they are resistant to known attacks, for a better
choice.

 ISSN: 1693-6930

TELKOMNIKA Vol. 11, No. 2, June 2013: 381 – 392

382

This paper, however, analyzes the security of NMAC and its variants based on
the assumption that the underlying hash functions are secure (collision resistance, CR),
instead of that instantiated with broken hash functions. We also point out that the
assumption of CR is a stronger notion than the origin assumption of that the underlying
compression function is a PRF [2]. We then find that NMAC is not secure enough to some
extent, for example, its inner key is vulnerable to equivalent key recovery attack, which needs
O(2n/2) on-line queries and off-line computations, in a related key setting.

In this paper, we propose some variants of NMAC, and analyze their security, based on
the assumption that the underlying hash functions are secure. We first point out that NMAC1
like the keyed input version H2-MAC proposed in [31], is vulnerable to equivalent key
recovery attack with complexity about 2n/2 on-line queries. The security of NMAC1 and H2-
MAC are totally dependent on the collision resistance of the underlying hash function,
instead of the PRF property, which directly violates the claimed provable security.
Further, we point out the inner key of NMAC is vulnerable to equivalent key recovery attack, in
a related key setting. The security strength of NMAC depends on one of its two keys, even if
it’s both keys are independently and randomly generated. We also propose a more secure
variant NMAC-E, which has some advantages compared to NMAC, and HMAC-E.

This paper is divided into seven sections. Section 2 recalls the related definitions and
background. Section 3 proposes and crypt analyzes some NMAC variants including NMAC with
secret prefix approach. Section 4 proposes and analyzes the security of some NMAC variants
with secret suffix approach. We present and analyze a better choice of NMAC variant with the
modified version of the secret envelop approach, in section 5. Section six presents some
related work. We conclude the paper in the last section.

2. Preliminaries
2.1 Notations

Let h be a compression function mapping {0, 1}n×{0, 1}b →{0, 1}n, and let H be a
concrete hash function mapping {0, 1}* → {0, 1}n. Let IV be the initial chaining variable of H.
Let k denote a secret key with b bits and K denote a secret key with n bits, respectively. x||y
denotes the concatenation of two bit strings x and y. |G| denotes the number of elements
of the set G. pad(M) denotes the padding bits of M in Merkle-Damg˚ard style.

2.2 NMAC
NMAC [2] [3], proposed by Bellare et al., is the basis of the most widely used

cryptographic algorithm HMAC. NMAC is built from iterated hash function H, where the IV
of H is replaced with a secret n-bit key K , the NMAC algorithm is defined as:

NMAC(Kout,Kin)(M) = H(Kout, H(Kin, M)) (1)

Where keys Kin, Kout ∈ {0, 1}n in NMAC are to replace the IV of hash function H before
further process. In practice, both keys are randomly and independently generated [3].

2.3 Security Notions of MAC
A universal forgery attack results in the ability to forge MACs for any message. A

selective forgery attack results in a MAC tag on a message of the adversary’s choice. An
existential forgery merely results in some valid message/MAC pair not already known to the
adversary.

3. The security of Some Variants with Secret Prefix
3.1 The security of NMAC1 (the keyed IV version of H2-MAC)

We define NMAC1 through keyed IV approach as:

(NMAC1)Kin(M) = H(H(Kin, M)) (2)

Where the IV of the outer hashing of NMAC1 is not replaced with any secret key. A

TELKOMNIKA ISSN: 1693-6930 

On the Security of NMAC and Its Variants (Fanbao Liu)

383

keyed input version of NMAC1 was also proposed by Yasuda as H2-MAC [31], which is shown
as (3). It was claimed that H2-MAC gets rid of the disadvantage of the secret key management
without losing the original advantage of HMAC. Wang announced an attack to recover the
equivalent key of H2-MAC instantiated with the broken MD5 [25][27], with about 297 on-line
MAC operations [22]. However, Liu et al. pointed out that the absence of the outer key is a
real threat to the security of H2-MAC [12], they could recover the equivalent key using
birthday paradox with complexity of about O(2n/2) MAC operations.

H2-MACK(M) = H(H(K||pad||M)) (3)

On-Line Birthday Attack for Existential Forgery Attack.
If we apply on-line birth- day attack to NMAC1 oracle, after about 2n/2 queries, we can

get a collision pair (M, M’) with the same length, which satisfies NMAC1(M) = NMAC1(M’). Then
for arbitrary message x, the equation NMAC1(M||pad(M)||x) = NMAC1(M’||pad(M’)||x) always
holds. This means that we can generate verifiable forgery of NMAC1, we first query the
corresponding MAC value of M||pad(M)||x, and we get the very MAC value for M’||pad(M’)||x,
eventually.

This kind of attack is applicable to all MAC algorithms instantiated with Merkle-
Damg̊ ard hash functions, also noticed by Yasuda [29]. Hence, the rest of the paper will not
discuss the specified attack again.

Equivalent Key Recovery Attack to NMAC1.
We use the same technologies to recover the equivalent key of NMAC1 as in [12] of H2-

MAC, with slight modifications to achieve more efficiency. We generate the group one G1 using
H(x), instead of H(H(C, Mi)) in [12], which can reduce at least half of the space and time. We
apply the generalized birthday attack with two groups [8] to NMAC1 and then recover its
equivalent key Ke = H(Kin, Mj).

Here, We first define the notation N2 as N2 = H(x), where x is an n-bit input (key). x can
be viewed as x = H (C, M), where C is a constant and M is the input message. Generally, N2 is
the non-key version of NMAC1. We use different n-bit input messages xis (0 ≤ i ≤ 2n − 1) to
generate the corresponding N2 values, and use different 1-block messages Mjs (0 ≤ j ≤ 2n−
1) to generate the corresponding NMAC1 values. The overall strategy of equivalent key
recovery attack to NMAC1 is shown as follows.
1. Generate a group one G1 with r = 2n/2 elements, by computing the corresponding values of

H(xi) for r different xis, which can be randomly generated.
2. Generate a group two G2 with s = 2n/2 elements, by querying the corresponding values to

NMAC1 oracle with the secret key Kin for s different Mjs, where Mjs are also randomly
generated.

3. There will be some pairs (xi, Mj) that satisfies (NMAC1)Kin(Mj) = N2(xi), with good probability
[8].

4. However, we cannot know that whether xj = H(Kin, Mj) further holds, we need to kick out the
unsatisfied pairs, which will be discussed later in key selection. After that, we have a pair
that satisfies xi = H(Kin, Mj) and (NMAC1)Kin(Mj) = N(xi). So we find out the equivalent key of
NMAC1 of Ke = H(Kin, Mj) = xi.

5. Let pad0 and pad1 be the padding bits of Mj and Mj||pad0||x, respectively, for arbitrary
message x. We generate the intermediate value of H(Kin, Mj||pad0||x) by computing y =
h(Ke,x||pad1), and calculate H(y) further, and get NMAC1(Kin, Mj||pad0||x), eventually.

Key Selection
To select a pair that satisfies xi = H(Kin, Mj), we always assume that each pair we have

is the right pair. To confirm the assumption, we first randomly generate an arbitrary message α;
and then we generate the padding bits pad of the Mj||pad0||α; third, we compute N2(α) = h(xi,
α||pad) and query the corresponding result θ of Mj||pad0||α to NMAC1 oracle, we note that θ
may be computed as follows.

θ = NMAC1(Kin, Mj||pad0||α) = H(h(H(Kin, Mj), α||pad)) (4)

 ISSN: 1693-6930

TELKOMNIKA Vol. 11, No. 2, June 2013: 381 – 392

384

Finally, we check if N2(α) = θ holds, if so, (xi, Mj) is the right pair. Otherwise, discard that pair.

Success probability and Complexity.
The probability Pr (|G1 ∩ G2| = 0) that there are no distinct element in the intersection of

the two groups is denoted by P (2n, r, s, 0). Let sp denote the success probability of the above
attack (at least one collision pair exists), then we can get the value of sp by computing sp = 1 −
P(2n, r, s, 0) ≥ 0.632 [12]. The elements of group G1 computed by N2 need 2n/2 off-line N2

computations (N2 just consists of one hash computation). The elements of group G2 computed
by NMAC1 need 2n/2 on-line NMAC1 queries. We can store the values of both groups using
hash tables. Then the above algorithm will require O(2n/2) time and space to complete.
We can use the recovered equivalent key Ke to launch any selective forgery attack to
NMAC1 without additional on-line query, which claims that the security of NMAC1 is
broken. Hence, we point out that the security of NMAC1 is solely dependent on the collision
resistance of the underlying hash function, not the strength of the used key.

3.2 The security of NMAC2
We define NMAC2 as:

(NMAC2)Kout(M) = H(Kout, H(M)) (5)

Where the inner key Kin is omitted. This variant NMAC2 was also noted by Bellare et al. in [3].
The outer hashing only accepts H(M) as legal input, which is an n-bit value. Though we can
learn the value of H(Kout, H(M)) easily, we cannot use that information to launch the extension
attack to NMAC2.

Off-Line Birthday Attack to NMAC2
We first apply an off-line birthday attack to H(M). After about 2n/2 off-line computations,

we can get a collision pair (M,M’), which satisfies H(M) = H(M’) and NMAC2(M) = NMAC2(M’),
eventually. Then, NMAC2(M||pad(M)||x) = NMAC2(M’||pad(M’)||x) always holds, for arbitrary
message x. It means that we can generate verifiable forgery to NMAC2, we first query for the
MAC value of M||pad(M)||x, and get the MAC value for M’||pad(M’)||x, eventually.

3.3 The security of NMAC3
We define NMAC3 as:

(NMAC2)Kio(M) = H(Kio, H(Kio,M)) (6)

Where the inner and outer keys are both set to Kio.
The on-line birthday attack for existential forgery applied to NMAC1 is also applicable to NMAC3
with any modification. Further, we point out that the off-line birthday attack to get existential
forgery is also Applicable to NMAC3 after some optimization. We show the strategy as follows:
1. Query the corresponding MAC value of M0 to the NMAC3 oracle, which will answer H(Kio,

H(Kio, M0)).
2. Assume the unknown H(Kio, M0) be x0, and pad0 be the padding bits of x0. We already know

the corresponding value of H(Kio, x0) (an equivalent key of the inner hashing), which is
NMAC3(M0).

3. Based on the known H(Kio, x0), we launch an off-line birthday attack to find a collision pair
(Mx, Mx’) satisfying H(Kio, x0||pad0||Mx) = H(Kio, x0||pad0||Mx’).

4. For arbitrary message x, we can launch a verifiable forgery attack.
However, since the value of H(Kio, M0) is unknown, how to use the above information to launch
a verifiable forgery attack is still an open problem.

3.4 The security of NMAC
As pointed out by Bellare et al., the on-line birthday attack for existential forgery attack

is also applicable to NMAC [2], here we omit the details. However, we further notice that we
can generate existential forgery for NMAC, by an off-line birthday attack, which is shown as the

TELKOMNIKA ISSN: 1693-6930 

On the Security of NMAC and Its Variants (Fanbao Liu)

385

attack to NMAC2, once the inner key Kin is leaked.

Related Key Attack to Recover the Equivalent Inner Key.
To recover the equivalent inner key Ke with n-bit, we have the following setting for our

related-key attacks on NMAC. There are two oracles NMAC(Kout ,Kin) and NMAC(Kout′, Kin’). We set
the relation between (Kout, Kin) and (Kout′, Kin′) as follows:

Kout = Kout′ and Kin′ ∈ {Constants}

Where these two oracles share the same outer key, and the inner key of NMAC(Kout′, Kin’) can be
any known n-bit Constants, such as the IV of H.
The overall strategy of the equivalent inner key recovery attack to NMAC is shown as follows.

1. Query NMAC(Kout, Kin) oracle for the corresponding values of 2n/2 different Mis, store their
values in group one G1.

2. Query NMAC(Kout’, Kin’) oracle for the corresponding values of 2n/2 different Mj′s, store their
values in group two G2.

3. A pair (Mi, Mj′) satisfies NMAC(Kout ,Kin)(Mi) = NMAC(Kout′, Kin’)(Mj’) (the generalized birthday
attack with two groups), and further satisfies H(Kin, Mi) = H(Kin ′, Mj′) (an inner collision
happens).

4. Since H(Kin, Mi) = H(Kin′, Mj′), and we know the value of Kin′ and Mj′, hence we can
calculate the very value of Ke = H(Kin, Mi) = H(Kin′, Mj′).

We conclude that the equivalent inner key of NMAC is totally dependent on the generalized
birthday attack, not the strength of the used inner key, in the related key setting. However, if the
outer key Kout of NMAC is leaked, then, it needs a generalized birthday attack to recover the
equivalent inner key to break the entire system, shown as the attack to NMAC1.

From these attacks, we claim that the security of NMAC is dependent on the secrecy of
one of the keys, even if it’s both key are independently and randomly generated. As pointed
out by the editors of Cryptology ePrint Archive in our preliminary version of this paper, the
equivalent key recovery attack to NMAC is not applicable to the practical HMAC, since the
HMAC keys are derived from a base key, and there exists no related key.

4 The security of Some Variants with Secret Suffix
In this section, we discuss the security of some NMAC variants NMAC-Si with secret

suffix approach. We first prove that the security of original secret suffix is totally dependent
on the collision resistance (CR) of the underlying hash function. We then discuss the
security of some variants of NMAC with secret suffix approach.

4.1 The Security of H (M||K)
For an n-bit key K, we will prove as follows, the security of the secret suffix M-S is

totally dependent on the collision resistance of the underlying hash function, instead of
the strengthen of the key.

Theorem 1
The security of H(M||K) is totally dependent on the collision resistance of the

underlying hash function H, instead of the strengthen of the used key.
We prove Theorem 1 by giving the complexity of the worst case of the key recovery attack and
best case attack, respectively, which are all based on the assumption that the message M is
multiples of bytes. The worst case of the key recovery attack is that we assume the collision
attack of H has no control over the content of the collision pair (M, M′). The best case is that we
assume the collision attack has full control over some bytes of the collision pair. We notice that
the complexity of the collision attack is 2n/2 hash compressions by an off-line birthday attack,
for a hash function H with n-bit output. The attack is based on the “slice-by-slice” key recovery
of trail key in secret envelop approach, proposed by Preneel et al [16].

 ISSN: 1693-6930

TELKOMNIKA Vol. 11, No. 2, June 2013: 381 – 392

386

Proof
The Best Case.

Since the collision attack has full control over some bits of the collision pair, to
recover each byte of the key K, only (28 − 1) collision pairs must be generated in the
worst case. So we need to generate (28 − 1)(n/16) collision pairs to recover the first n/2 bits of
K, and we can recover the last n/2 bits of K through brute force attack, which needs 2n/2 hash
compressions. So the total complexity of the full key recovery attack is 2n/2×(28 − 1)×(n/16) +
2n/2 < 2n/2+8+log2 n/16 hash compressions.

The Worst Case.
Since the collision attack has no control over any bit of the collision pair, to recover the

j-th (1≤j≤n/8) character of the key K, 28•j collision pairs must be first generated. So we can
recover the first n/4 bits of the key by generating (28 + 28•2 + • • • + 2n/4) collision pairs, and we
can recover the last 3•n/4 bits through brute force attack, which needs 23•n/4 hash
compressions. The total complexity is 2n/2•(28 + 28•2 + • • • + 2n/4) + 23•n/4 ≈ 2n/2+n/4+1 hash
compressions.

Table 1. Complexity of Key Recovery Attack to Secret Suffix Approach

All in all then, the complexity of the key recovery to H(M||K) ranges from 2n/2+8+log2n/`16 to 2n/2+n/4+1

hash compressions, which means that the security of M-S is dependent on the collision
resistance of the underlying hash function H , instead of the strength of the key. Here, we
assume that the underlying hash function is secure, in fact, for some applications with broken
hash functions; the situation is totally in danger. For example, APOP (Authentication Post Office
Protocol), which is instantiated with broken MD5, applies secret suffix approach; an attacker
can recover the password as long as 352 bits in practical time [11].

We list the complexity of key recovery attack to H(M||K) in Table 1, with different
limitations on the input message M . Word means that M must be multiples of 32-bit words.
However, as shown in Table 1, we point out that both the best and worst cases are exhaustive
key search, if the message M is multiples of n bits.

4.2 The security of NMAC-S1
We define NMAC-S1 as:

(NMAC-S1)Kin(M) = H(H(M||Kin)) (7)

Where the outer key Kout is omitted. The off-line birthday attack can be applied to NMAC- S1.
Full Key Recovery Attack to NMAC-S1. We can directly apply the full key recovery attack to
H(M||Kin), since the outer hashing does not hide the inner collision. After that, we can fully
recover the inner key of NMAC-S1, and then can construct any verifiable forgery. The
complexity of the key recovery attack to NMAC-S1 can be shown Table 1.

4.3 The security of NMAC-S2
We define NMAC-S2 as:

(NMAC-S2)Kout(M) = H(H(M)||Kout) (8)

Where the inner key Kin is omitted. The off-line birthday attack can be applied to NMAC-S2 .
However, it seems that no key recovery attack to NMAC-S2 can be launched as NMAC-S1.

TELKOMNIKA ISSN: 1693-6930 

On the Security of NMAC and Its Variants (Fanbao Liu)

387

H(M) is n bits long, and Kout is also n bits, which means that the concatenation of both are
inside one block, so the slice-by-slice key recovery strategy can’t be applied. Exhaustive
search must be performed to break the outer key Kout, whose complexity is 2n MAC
computations.

4.4 The security of NMAC-S3
We define NMAC-S3 as:

(NMAC-S3)Kio(M) = H(H(M||Kio)||Kio) (9)

Where the inner and outer keys are equal. The off-line birthday attack can be applied to
NMAC-S3.

Key Recovery Attack to NMAC-S3
We can directly apply the full key recovery attack to H(M||Kio), since the outer hashing

does not hide the inner collision. After that, we can fully recover the inner key Kio , which is also
the outer key, of NMAC-S3. Finally, we can construct any verifiable forgery. The complexity of
the key recovery attack to NMAC-S3, which is analogous to NMAC-S1, is also shown in Table 1.

4.5 The security of NMAC-S
We define NMAC-S as:

(NMAC-S)(Kin, Kout)(M) = H(H(M||Kin)||Kout)

Where the inner and outer keys are different. The off-line birthday attack can be applied to
NMAC-S.

Inner Key Recovery Attack to NMAC-S.
We can directly apply the full key recovery attack to H(M||Kin), since the outer hashing

does not hide the appearance of the inner collision. After that, we can fully recover the inner
key Kin of NMAC-S. However, with Kin, we can’t directly construct any verifiable forgery, thanks
to the outer hashing with the unknown Kout . The outer key Kout can’t be recovered like Kin,
which is also analyzed in NMAC-S2. It seems that we have to apply additional off-line birthday
attack to H(M), for a meaningful existential forgery.

4.6 Counterpart for the Key Recovery Attack to NMAC-S Variants
To avoid the full key recovery attack to NMAC-S Variants, we modify the inner hashing

form H(M||Kin). We always assume that n|b, which means that b is the multiples of n. Let padn
(1||0*) be the padding bits of M, padn is defined as

n|(|M| + |padn|) (10)
We re-define the inner hashing form as:

H(M||padn||Kin)

Where the inner key Kin resides as a whole part on the input block. We have the following
theorem for the key recovery attack.

Theorem 2
Slice-by-slice key recovery strategy cannot be applied to H(M||padn||Kin), for launching key
recovery attack.
Proof. Since n|b and n|(|M| + |padn|), and |Kin| = n, then n|(|M||padn||Kin|), hence, no slice can be
made to the key Kin.
However, the NMAC-S Variants after modification are still vulnerable to off-line birthday attack
for existential forgery attack.

 ISSN: 1693-6930

TELKOMNIKA Vol. 11, No. 2, June 2013: 381 – 392

388

5. The security of an NMAC Variant with Secret Envelop
In last two sections, we discuss the security of NMAC variants with secret prefix and

secret suffix, respectively. In this section, we discuss the security of an NMAC variant, NMAC-
E, with secret envelop approach.

5.1 NMAC-E with Modified Secret Envelop
We propose NMAC-E with modified version of the secret envelop approach,

which has the advantage of both equivalent key recovery resistance and slice-by-slice key
recovery resistance. The modification is straightforward, we pad the input message M with
padn, which can be some fixed constants, before appending the outer key K . We define
NMAC-E as:

NMAC-E(K) = H (K, M||padn||K)

Where K is a randomly generated n-bit key. M ||padn is multiples of n bits.

5.2 The security of NMAC-E
Off-Line Birthday Attack Resistance.

NMAC-E is resistant to off-line birthday attack for existential forgery, thanks to the
secret “IV”, the key K. Without any knowledge about the “IV”, the off-line birthday attack to find
a collision pair can’t be launched.

Equivalent Key Recovery Attack Resistance.
NMAC-E is resistant to equivalent key recovery attack, thanks to the appended key K.

Even if the attacker can find out the result of NMAC-E(K) easily, no extension attack can be
launched; hence, no equivalent key recovery attack happens.

Slice-by-Slice Key Recovery Attack Resistance.
NMAC-E is also resistant to slice-by-slice key recovery attack as proven in Theorem 2.

Divide-and-Conquer Exhaustive-Search Key Recovery.
The divide-and-conquer exhaustive-search key recovery [16] cannot be applied to

NMAC-E, since our scheme use one key, and a brute force attack should be performed to
find out the key. The attacks performed to NMAC also show that it is not necessary to bind two
keys to strengthen the MAC scheme.

On-Line Birthday Attack.
The on-line birthday attack is applicable to NMAC-E, after about 2n/2 on-line MAC

queries, a collision pair may be found that NMAC-E(M) = NMAC-E(M′).
We list the security properties of all NMAC variants discussed in this paper, in Table 2. OFBAR
stands for off-line birthday attack resistance, ONBAR stands for on-line birthday attack
resistance, EKRAR means equivalent key recovery attack resistance, SSKRAR means
slice-by-slice key recovery attack resistance, DCESKRR stands for divide-and- conquer
exhaustive- search key recovery resistance.  means there only one key exists.

Table 2. Security Comparison between NMAC Variants
MAC OFBAR ONBAR EKRAR SSKRAR DCESKRR

NMAC1 Yes No No Yes 
NMAC2 Yes No No Yes 
NMAC3 Yes No No Yes No
NMAC Yes No No Yes No
NMAC-S1 No No Yes No 
NMAC-S2 No No Yes No 
NMAC-S3 No No Yes No No
NMAC-S No No Yes No No
NMAC-E Yes No Yes Yes 

TELKOMNIKA ISSN: 1693-6930 

On the Security of NMAC and Its Variants (Fanbao Liu)

389

Performance Analysis of NMAC-E.
NMAC-E uses only one call of the underlying hash function, but introduces a message

padding process, compared to NMAC. However, since the padding happens at the tail of the
message M , and the filling bits of pad are some constants, which aims to align the input
block M′ to be multiples of b bits, the cost of padding is negligible, especially for long
message. Moreover, NMAC-E processes only one more block, compared to the inner hashing
of NMAC. Hence, the NMAC-E is efficient than NMAC.

5.3 Security Proof for NMAC-E
We first recall the Theorem 3.1 of [1]; it says that H* is a pf-VI-PRF, if the underlying

compression function h is an FI-PRF. we list the detail of the Theorem as follow, where we
change the notions to suitable this paper.

Theorem 3.1 of [1].
Let h be a function family with Dom(h) = {0, 1}b, Range(h) = {0, 1}n, and key length n.

Suppose h is (t, q, 1, ε)-secure and let l ≥ 1. Then h* is (t, q, l, ε)-secure against prefix-free
distinguishers, where

t = t′ − cq.(l + n + b).(Time(h) + log q)
ε = qlε′

Here, c is a specific, small constant whose value can be determined from the proof. For the
detail of this proof, please refer [1].
In [1], a construction called Facsc was proposed to construct VI-PRF family δ−AF*, based on
an FI-PRF. δ−AF is constructed as follows. Given a family F with key length n + δ, having key
(K, d) where K ∈{0, 1}n and d∈{0, 1}δ , let δ−AFK,d(x) = F(x||d) for all b-bit x. Finally, δ−AF* is a VI-
PRF, which is provided by Corollary 4.2 of [1].

Corollary 4.2 of [1].
Let h be a function family with Dom(h) = {0, 1}b , Range(h) = {0, 1}n, and key length

n. Suppose h is (t, q, 1, ε)-secure and let l ≥ 1. Then δ-Ah* is (t, q, l, ε)-secure, where

t = t′ − cq.(n + b + (l + log δ).Time(h) + (n + l + b).log q)
ϵ = lqϵ′ + blq2−α .

However, we can’t get the conclusion that NMAC-E is a VI-PRF directly, based on the both
conclusions of [1], since another part padding is inserted between the message M and the
“δ” key Ki2 in NMAC-E.

We notice that NMAC-E(K) = H ∗(K, M ||padn ||K), where M is first padded with some
fixed bits, and then transferred to be processed by H. We divide the proof of that; NMAC-E is a
PRF if the underlying h is a dual PRF, into two parts. First, we prove that H ∗(K, M ||padn) is a
pf-VI-PRF. Second, we prove that NMAC-E is a PRF under the sole assumption that the
underlying compression function h is a PRF.

Theorem 3.
If the compression function h of the underlying hash function H is a PRF, then H*(K, M||padn),
where padn is the padding bits of M without length information, is a pf-VI-PRF.
Proof. From the Theorem 3.1 of [1], we know that H*(K, M) is a pf-PRF if the underlying
compression function h is a PRF. Since the content of padn (the number of ‘0’s to be filled) is
totally determined by the length of M, which means it is obviously known. Hence, M||padn is not
prefix-free, we can directly get the conclusion that H*(K, M||padn) is a pf-VI-PRF, if the
underlying h is a PRF.

Based on the Theorem 3 and the corollary 4.2 of [1], we can get the conclusion that
NMAC-E is a PRF under the sole assumption that the underlying compression function h is a
PRF.

 ISSN: 1693-6930

TELKOMNIKA Vol. 11, No. 2, June 2013: 381 – 392

390

Theorem 4.
If the compression function h of the underlying hash function H is a PRF, then NMAC-E(K)
construction H*(K, M||padn||K), where padn is the padding bits of M without length information,
is a VI-PRF.
Proof. This theorem can be conducted directly based on the Theorem 3 and the Corollary
4.2 of [1].

5.4 HMAC-E
To utilize the advantage of NMAC-E and to employ the underlying hash functions as a

black box like HMAC, we also propose a “HMAC” version of the NMAC-E, named HMAC-E.
We define HMAC-E as:

HMAC-E = HMAC-E(K) = H (K||M ||padn||K)

Where K is an n-bit key.
HMAC-E is a PRF under the sole assumption that the underlying hash function is

a dual PRF, the proof is similar to the security proof of NMAC-E, for the lack of space, we
omit the details. HMAC-E calls the underlying hash function H only once, whereas HMAC
requires two invocations of H, and HMAC-E involves no key derivation. HMAC-E can achieve
more process efficiency, compared to HMAC, and without loss of security.

6. Related Work
The ENMAC algorithm [15] increases efficiency over HMAC using a secret-prefix

approach for short messages. The MDP construction [9] operates as a secret-prefix MAC
algorithm for messages of any length by applying a permutation. The Sandwich construction
[30] is similar to our proposed NMAC-E, but it suffers low efficiency over short messages
compared to our scheme. The L-Lane HMAC construction [29] was proposed to avoid the
general birthday attack to HMAC. The BNMAC algorithm [28] aim to improve efficiency over
HMAC, using single key approach. The H2-MAC construction [31], omitting the outer hash
of HMAC, tends to improve efficiency over HMAC with provable secure, but recent
research shows that it is vulnerable to equivalent key recovery attack [12] based on the
assumption that the underlying hash function is (weak) collision resistance.

7. Conclusion and Future Work
Based on the three earlier approaches to construct MAC algorithms and different key

distributions, we propose a series of NMAC variants, we also analyze those variants in order to
find a better and more secure one. We find a variant of NMAC, named NMAC-E, with the
modified version of the secret envelop approach, and can withstand all known attacks to MAC
algorithms.

We notice that all kinds of NMAC variants, based on Merkle-Damg˚ard construct hash
functions, are vulnerable to the on-line birthday attack for verifiable forgery. In fact, a pair (Mi,
Mj′), which has the same MAC value after about 2n/2 on-line queries, is acceptable to some
extent. It is not a forgery in this situation, since we have already queried the MAC oracle for
their corresponding MAC results. The only problem is that, there are so many collision pairs
after the concatenation of arbitrary message x, once a collision pair is found.

References
[1] Bellare M, Canetti R, Krawczyk H. Pseudorandom functions revisited: the cascade construction and

its concrete security. Foundations of Computer Science. Annual IEEE Symposium on 0. 1996; 514.
[2] Bellare M. New Proofs for NMAC and HMAC: Security without Collision-Resistance. In: Dwork C

(ed.) Advances in Cryptology - CRYPTO 2006, Lecture Notes in Computer Science, vol. 4117.
Heidelberg: Springer Berlin. 2006: 602–619.

[3] Bellare M. Canetti R, Krawczyk H. Keying Hash Functions for Message Authentication. In: Koblitz N

TELKOMNIKA ISSN: 1693-6930 

On the Security of NMAC and Its Variants (Fanbao Liu)

391

(ed.) Advances in Cryptology CRYPTO’ 96, Lecture Notes in Computer Science, vol. 1109.
Heidelberg: Springer Berlin. 1996: 1–15.

[4] Contini S, Yin Y. Forgery and Partial Key-Recovery Attacks on HMAC and NMAC Using Hash
Collisions. In: Lai X, Chen K (eds.) Advances in Cryptology ASIACRYPT 2006, Lecture Notes in
Computer Science, vol. 4284. Heidelberg: Springer Berlin. 2006: 37–53.

[5] Damg˚ard I. A Design Principle for Hash Functions. In: Brassard, G. (ed.) Advances in Cryptology
CRYPTO’ 89 Proceedings, Lecture Notes in Computer Science, vol. 435. Heidelberg: Springer
Berlin. 1990: 416–427.

[6] Eastlake DE, Jones P. US secure hash algorithm 1 (SHA1). RFC 3174, Internet Engineering Task
Force (Sep 2001), http://www.rfc-editor.org/rfc/rfc3174.txt.

[7] Fouque, Pierre-Alain, Leurent, Gatan, Nguyen, Phong. Full key-recovery attacks on hmac/nmac-
md4 and nmac-md5. In: Menezes, A. (ed.) Advances in Cryptology - CRYPTO 2007, Lecture Notes
in Computer Science, vol. 4622. Heidelberg: Springer Berlin. 2007: 13–30.

[8] Girault M, Cohen R, Campana M. A Generalized Birthday Attack. In: Barstow D, Brauer W, Brinch
Hansen P, Gries D, Luckham D, Moler C, Pnueli A, Seegmller G, Stoer J, Wirth N, Gnther C
(eds.) Advances in Cryptology EUROCRYPT 88, Lecture Notes in Computer Science, vol. 330.
Heidelberg: Springer Berlin. 1988: 129–156.

[9] Hirose S, Park J, Yun A. A simple variant of the merkle-damg̊ ard scheme with a permutation. In:
Kurosawa K. (ed.) Advances in Cryptology ASIACRYPT 2007, Lecture Notes in Computer Science,
vol. 4833. Heidelberg: Springer Berlin. 2007: 113–129.

[10] Leurent G. MD4 is not One-Way. In: Nyberg K (ed.) Fast Software Encryption, Lecture Notes in
Computer Science, vol. 5086. Heidelberg: Springer Berlin. 2008: 412–428.

[11] Liu F, Liu Y, Xie T, Feng D, Feng Y. Fast Password Recovery Attack: Application to apop. Journal
Intelligent Manufacturing. 2012: 1–11.

[12] Liu F, Xie T, Shen C. Breaking H2-MAC Using Birthday Paradoc. Cryptology eprint Archive, Report
2011/647 (2011), http://eprint.iacr.org/

[13] Menezes AJ, Vanstone SA, Oorschot PCV. Handbook of Applied Cryptography. CRC Press, Inc.,
Boca Raton, FL, USA, 1st edn. 1996.

[14] Merkle R. One Way Hash Functions and DES. In: Brassard, G. (ed.) Advances in Cryptology
CRYPTO 89 Proceedings, Lecture Notes in Computer Science, vol. 435.Heidelberg: Springer Berlin.
1990: 428–446.

[15] Patel S. An efficient mac for short messages. In: Nyberg K., Heys H. (eds.) Selected Areas in
Cryptography, Lecture Notes in Computer Science, vol. 2595. Heidelberg: Springer Berlin. 2003:
353–368.

[16] Preneel B, Van Oorschot P. On the security of iterated message authentication codes. IEEE
Transactions on Information Theory. 1999; 45(1): 188 – 199.

[17] Preneel B. Cryptographic Primitives for Information Authentication State of the Art. In: State of the
Art in Applied Cryptography, Lecture Notes in Computer Science, vol. 1528. Heidelberg: Springer
Berlin. 1998: 49–104.

[18] Preneel B, van Oorschot P. On the Security of Two MAC Algorithms. In: Maurer, U. (ed.) Advances in
Cryptology EUROCRYPT 96. Lecture Notes in Computer Science, vol. 1070. Heidelberg: Springer
Berlin. 1996: 19–32.

[19] Rivest R. The MD5 Message-Digest algorithm. RFC 1321, Internet Engineering Task Force (Apr
1992), http://www.rfc-editor.org/rfc/rfc1321.txt.

[20] Tsudik G. Message authentication with one-way hash functions. SIGCOMM Comput Commun Rev.
1992; 22: 29–38.

[21] Wang L, Ohta K, Kunihiro N. New Key-Recovery Attacks on HMAC/NMAC-MD4 and NMAC-MD5.
In: Smart N (ed.) Advances in Cryptology EUROCRYPT 2008, Lecture Notes in Computer Science,
vol. 4965. Heidelberg: Springer Berlin. 2008: 237–253.

[22] Wang W. Equivalent Key Recovery Attack on H2-MAC Instantiated with MD5. In: Kim Th, Adeli H,
Robles RJ, Balitanas M (eds.) Information Security and Assurance, Communications in Computer
and Information Science, vol. 200. Heidelberg: Springer Berlin. 2011: 11–20.

[23] Wang X, Lai X, Feng D, Chen H, Yu X. Cryptanalysis of the Hash Functions MD4 and RIPEMD. In:
Cramer R (ed.) Advances in Cryptology EUROCRYPT 2005, Lecture Notes in Computer Science, vol.
3494. Heidelberg: Springer Berlin. 2005: 551–551.

[24] Wang X, Yin Y, Yu H. Finding Collisions in the Full SHA-1. In: Shoup, V. (ed.) Advances in

 ISSN: 1693-6930

TELKOMNIKA Vol. 11, No. 2, June 2013: 381 – 392

392

Cryptology CRYPTO 2005, Lecture Notes in Computer Science, vol. 3621. Heidelberg: Springer
Berlin. 2005: 17–36.

[25] Wang X, Yu H. How to Break MD5 and Other Hash Functions. In: Cramer, R. (ed.) Advances in
Cryptology EUROCRYPT 2005, Lecture Notes in Computer Science, vol. 3494. Heidelberg: Springer
Berlin. 2005: 561–561.

[26] Wang X, Yu H, Wang W, Zhang H, Zhan T. Cryptanalysis on HMAC/NMAC-MD5 and MD5-MAC.
In: Joux, A. (ed.) Advances in Cryptology - EUROCRYPT 2009, Lecture Notes in Computer
Science, vol. 5479. Heidelberg: Springer Berlin. 2009: 121–133.

[27] Xie T, Liu F, Feng D. Could The 1-MSB Input Difference Be The Fastest Collision Attack For
MD5? Eurocrypt 2009, Poster Session, Cryptology ePrint Archive, Report 2008/391 (2008),
http://eprint.iacr.org/.

[28] Yasuda K. Boosting merkle-damg˚ard hashing for message authentication. In: Kurosawa, K. (ed.)
Advances in Cryptology ASIACRYPT 2007, Lecture Notes in Computer Science, vol. 4833.
Heidelberg: Springer Berlin. 2007: 216–231.

[29] Yasuda K. Multilane hmac-security beyond the birthday limit. In: Srinathan K, Rangan C, Yung M.
(eds.) Progress in Cryptology INDOCRYPT 2007, Lecture Notes in Computer Science, vol. 4859.
Heidelberg: Springer Berlin. 2007: 18–32.

[30] Yasuda K. “sandwich” is indeed secure: How to authenticate a message with just one hashing. In:
Pieprzyk J, Ghodosi H, Dawson E. (eds.) Information Security and Privacy, Lecture Notes in
Computer Science, vol. 4586. Heidelberg: Springer Berlin. 2007: 355–369.

[31] Yasuda, K. HMAC without the “Second” Key. In: Samarati P, Yung M, Martinelli F, Ardagna C (eds.)
Information Security, Lecture Notes in Computer Science, vol. 5735. Heidelberg: Springer Berlin.
2009: 443–458.

