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Abstract 
 The handwriting is an object that can describe information about the author implicitly. For 

example, it is able to predict the gender. Recently, the gender prediction based on handwriting becomes 
an interesting research. Even in 2013, an competition for prediction gender from handwriting has been 
held by Kaggle. However, the accuracies of current approaches are relatively low. So, in this study, we 
attempt to implement Fuzzy Rule-Based Classification Systems (FRBCSs) for gender predictions from 
handwriting. Three stages are conducted to achieve the objective, as follows: defining some features 
based on Graphology Techniques (e.g., pressure, height, and margin on writing), collecting real datasets, 
processing on digital images (i.e., image segmentation, projection profiles, and margin calculation, etc.), 
and implementing FRBCSs. The implemented algorithm based on FRBCSs in this research is Chi’s 
Algorithm, which is a method based on Fuzzy Logic for classification tasks. Moreover, some experiments 
and analysis, involving 75 respondents consisting of 36 males and 39 females, have been done to validate 
the proposed model. From the simulations, the classification rate obtained is 76%. Besides improving the 
accuracy rate, the proposed model can provide an understandable model by utilizing fuzzy rule-based 
systems.  
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1. Introduction 

The handwriting is one of the objects in research used for focusing on discovering 
private information about its authors. In handwriting, a scratch written by someone will be 
greatly influenced by the emotional, health, and past experience in itself [1]. It means that a 
person's handwriting can determine characteristics inside the writing, such as the level of 
emotion, confidence, and the gender [2]. Based on research conducted by Weisberg et al. [3], 
for example, a woman has the openness, curiosity, empathy, and emotion that is higher  
than men. 

In 1897, the term “graphology” was introduced by Michon [1] in Paris by merging two 
Greek words: graphein meaning write and logos for science. At that time, he analyzed 
handwriting scientifically. Then, Jamin, who is one of Michon’s students, continued his work by 
dividing the writing into seven fundamental aspects: speed, pressure, form, dimension, 
continuity, direction, and order [4]. By these techniques, this research also revealed health 
issues, morality and past experiences to hidden talents, and mental problems. Thus, it is 
possible that some aspects of graphology to be a parameter determining sex based on 
handwriting. 

In 2013, research on gender prediction based on handwriting to be very interesting to 
discuss. This is evidenced by the competition, organized by Kaggle and attended by 194 teams 
from academia and industry, for gender prediction from images of handwriting [5]. Competitors 
are required to construct a model for the gender prediction by learning from datasets provided 
by the organizers, and then to make predictions on new data. This activity has been making a 
motivation in research for determining gender from handwriting. Currently, some researches on 
gender prediction based handwriting have been done. Some of them are done by Liwicki et al. 
[6], Maadeed and Hassaine [7], and Bradley [2]. In their studies, they mostly used some aspects 
in graphology, such as pressing a pen, writing curvature, etc., Furthermore, it can be seen from 
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these studies that the classification rates are between 54% and 74%. So, the accuracy is still 
relatively low.  

Therefore, this research is aimed to construct a model used for predicting a gender from 
handwriting by using Fuzzy Rule-Based Classification Systems (FRBCSs). The systems are 
proposed by utilizing fuzzy concepts to construct a set of fuzzy rules for dealing with 
classification tasks. In this case, we consider an algorithm included in FRBCSs, which is Chi’s 
Algorithm. Basically, the proposed model contains three stages as follows: (i) we define some 
features based on the graphology techniques (e.g., pressure, height, slope, and margin on 
writing), (ii) some real datasets represented in images of handwriting are gathered, (iii) some 
processes on these images should be done, such as image segmentation, projection profile, 
and margin calculation, and (iv) finally we implement FRBCSs to construct a model represented 
by a set of fuzzy rules.  

This paper is organized as follows section 2 introduces to fuzzy set theory and 
FRBCSs. Then, section 3 describes the proposed model for gender prediction from handwriting. 
We illustrate an experimental study in section 4 that is followed by its results and discussion in 
section 5. Finally, section 6 concludes the paper. 

 
 

2. Fuzzy Rule-Based Classification Systems (FRBCSs) 
Before explaining about FRBCSs, firstly this section will discuss fuzzy set theory. It was 

proposed as a generalization of classical set theory to express sets by introducing degrees of 
membership of elements in sets [8]. Therefore, the main difference between crisp set from fuzzy 
set is that while the first just has two values for membership: a member and non-member, the 
latter allows to the degree of membership between zero and one. Mostly, we express this 
membership by membership functions, such as trapezoid, triangular, Gaussian, etc. Moreover, 
the theory effectively expresses the model of a human expert knowledge because of the 
concept of linguistic variables represented by fuzzy sets. For example, we define that the 
imprecise value of the object a1 is “cold”, and its degree of the membership function µ is 0.7. 
This statement can be interpreted that a1 can be included in a fuzzy value expressed by “cold” 
with the membership of the object in the fuzzy label is 0.7.  

An implementation of fuzzy sets is fuzzy rule-based systems (FRBSs), which are a 
variant of rule-based systems that are usually written in the IF-THEN form. In a general form, we 
have “IF X1 is A THEN Y is B”, where X1 and Y are input and output variables with A and B are 
fuzzy sets. It can be seen that instead of involving numerical values, we represent knowledge in 
a fuzzy rule involving fuzzy sets.  

Furthermore, FRBCSs are a variant of FRBSs that are used for dealing with 
classification tasks. A main property of FRBCSs is that the consequent part is represented by a 
class Cj from the pre-specified class set C = {C1, C2, …, CM} whereas the antecedent part is 
kept in linguistic variables [9]. For example, we are trying to select mangos according to their 
quality. So, we have following variables and their linguistic values to classify a mango fruit 
quality: dimension = {small, medium, large}; weight = {light, medium, heavy};  
color intensity = {lighter, neutral, darker}. Moreover, we have two decision values on the output 
variable: selected and rejected. In a specific case, we can take a fuzzy rule, as follows: 

 
IF dimension is large and weight is medium and color intensity is neutral THEN 
decision is selected. 
 

so, it can be seen that the fuzzy rules can be understood and interpreted by human.  
The next question that should be addressed is how to construct fuzzy rules from data 

training. Basically, there are two ways to construct a model in FRBCSs: by human experts and 
learning from data by using machine-learning methods. This research focuses on the second 
one, where the architecture showing the processes is illustrated in Figure 1. 

It can be seen that there are two stages, namely learning and prediction, in constructing 
an FRBCS model. On the learning step, we firstly need to supply data training. Then, we 
perform a learning method that mostly involves the following two aspects: structure identification 
and parameter estimation [10, 11]. In the structure identification, a rule base corresponding to 
pairs of input and output variables is determined. Then, in the parameter estimation, the optimal 
values of the membership function are obtained. It should be noted that these processes can be 
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done sequentially or simultaneously. In this research, we consider Chi’s Algorithm as the 
learning method [9]. Basically, it is an extension of Wang Mendel’s Algorithm [12], which is a 
learning method using the space partition approach to build FRBSs. 

 
 

 
 

Figure 1. Learning and prediction stages on FRBCSs 
 
 
For the learning step, the following steps are should be done: 

1) Divide equally ranges of values of the input and output variables into fuzzy regions regarding 
defined linguistic values as the database. For example, we define the range of the mango 
weight between 0.0 kg and 1.6 kg. Then, the following linguistic terms are used: “light”, 
“medium”, and “heavy”. It means the number of linguistic terms is 3. So, we can calculate the 
fuzzy regions as the following intervals: [0, 0.8], [0.4, 1.2], and [0.8, 1.6] for “light”, “medium”, 
and “heavy”, respectively. Now we can construct triangular membership functions that can 
be defined by the corner points. For example, in the “medium” value, we can construct a 
triangle with the corner points as a = 0.4, b = 0.8, and c = 1.2 where b is the middle point 
with the membership function degree of 1. 

2) Built a set of fuzzy rules representing the training data by implementing the database from 
Step 1. So, in this step, degrees of membership function can be calculated for all values in 
the training data, and choose a linguistic value based on its maximal degree for the 
antecedent part. It should be noted that the consequent part is a categorical value/class.  

3) Calculate a degree for each fuzzy rule. It is determined by fuzzy set operators (e.g., product) 
over degrees of membership functions in the antecedent part.  

4) Obtain a final rule base after omitting redundant rules. Moreover, we can delete a redundant 
rule by considering its degree. 

After accomplishing these processes on learning methods, an FRBCS model 
representing knowledge over the data have been constructed. Basically, the model contains two 
parts: rule base and database. A rule base is the same as a set of fuzzy rules whereas a list of 
fuzzy labels, membership functions, and their values are collected into database. Then, this 
model will be used on the next stage, which is prediction.  

In the prediction part, after supplying a set of new data, we perform fuzzification, which 
is a process for transforming from crisp sets into fuzzy sets (i.e., represented by linguistic labels 
and their degrees of memberships) [10]. Then, by using the FRBCS model obtained from the 
learning step, inference should be done to predict values of new data. A complete explanation 
regarding these processes can be found in e.g., [13]. Moreover, implementations of fuzzy logic 
have been done by many researches. For example, the study of [14] utilized fuzzy logic for 
optimizing in a lighting control system; a fuzzy logic classification has been conducted to classify 
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the queuing incoming packet [15]; and the maximization the power output of solar panels can be 
also achieve by performing fuzzy logic controller [16].  

 
 

3. The Model Construction for Gender Prediction 
Figure 2 shows the model proposed to predict gender from handwriting in this research. 

It can be seen that basically we can divide it into 5 big processes as follows: 
1) Designing features for generating data training. There are two following steps that should be 

done:  
a) Determining features used for input parameters on data training. In this case, we consider 

some features based on graphology, as follows: pressure on writing, height of letters and 
words, maximum height on sentences, center line on sentences, and margin.  

b) After designing the features, we need to choose letters, words, sentences, and 
paragraphs that are used as samples in this research. The following is a list of them: 
- Letters: {“a”, “d”, “e”, “g”, “k”, “m”, “t”}.  
- Words: {“Bilingual”, “Orange”, “Toblerone”}.  
- Sentences: {“The quick brown fox over the lazy dogs”, “A camel's tailbone is eaten by 

a lion”}. 
- Paragraph: {“A giraffe has steel pierced ears. Others chat with flying monkeys. Zebra 

peeks at x-rays with philosophy. Rhinos are finally angry at all.”}  
It should be noted that we choose these letters, words, sentences, and paragraphs since 
they are believed to represent any characteristics in graphology. So, by combining with 
the features and the chosen letters, words, and sentences, we obtain 49 parameters and 
1 output variable having two values: male or female.  

2) Data collection. In this step, two steps should be done as follows:  
a) Creating form for questioner. Basically, the respondents just need to re-write letters, 

words, and sentences indicated in the boxes with handwriting.  
b) Then, we delivered the questioners to some respondents. After a week, we obtained 75 

data containing handwriting with their genders.  
3) Image processing on the data. In order to obtain the features as determined previously, 

some standard techniques on image procession [17] should be done. For example, we need 
to perform image segmentation that is used for dividing an image into multiple segments 
(i.e., sets of pixels). In this case, we are using Otsu Threshold [18]. Then, we need to 
calculate height of letters and words, center line of words, pressure on letters and words, 
and margin of a paragraph. These features can be obtained by utilizing the projection profile 
technique [19]. Finally, the output of these processes is data that are used for training and 
testing on the experiments. 

4) On the other hand, we also implement Chi’s Algorithm based on FRBCS, where it has been 
explained on the previous section.  

5) To validate and test the proposed model, we perform some experiments. These are 
generated by conducting 5-fold cross validation. The complete explanation can be found on 
the next section. 

 
 
4. Experimental Study 

In this section we illustrate three important aspects that are used for experiments, as 
follows: collected datasets, cross validation, some parameters on learning with FRBCSs. 

 
4.1. Datasets 

As we mentioned previously, in this experiment we have collected image data from 75 
respondents consisting of 36 males and 39 females. Then, before doing image processing as 
illustrated in Figure 2, we scan the data to get digital images. After calculating with image 
processing techniques, we obtain numerical data as shown in Table 1. These values are 
generated by techniques in image processing mentioned in the model. 

So, it can be seen that the combinations between the defined features (height, centre 
line, pressure, and margin) and the chosen letters, words, and sentences generate 49 input 
parameters, such as X1 represents pressure on the letter “a”, X8 is pressure on the word 
“Bilingual”, X14 is height of the word “Bilingual”, and X49 is the left margin of the paragraph. 
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Actually, these attributes are generated by image processing on data training. The last column, 
which is Label, contains “Ma” and “Fe” representing the gender male and female. 

 
 

 
 

Figure 2. Research design on gender prediction using FRBCS and graphology techniques 
 

 

Table 1. A Part of Data Training Containing 75 Samples with 49 Input Parameters 
No X1 X2 X3 X4 … X46 X47 X48 X49 Label 

1 0.635 0.754 0.586 0.648 ... 7 0 46 22 Ma 

2 0.486 0.661 0.797 0.958 ... 0 283 116 33 Ma 

3 1.130 1.566 1.283 1.776 ... 12 62 183 18 Ma 

4 0.479 0.599 0.938 0.670 ... 16 85 281 22 Ma 

… ... ... ... ... ... ... ... ... ... ... 

74 0.975 0.800 0.790 1.096 ... 3 14 162 59 Fe 

75 0.692 0.653 0.887 0.876 ... 40 269 71 53 Fe 

 
 

4.2. Cross Validation 
Before doing the experiment, the data are arranged into training and testing datasets by 

using the cross validation 5-fold [20]. So, we obtain 5 pairs of data training and testing, where 
80% data is for training and the rest is for testing. In other words, we will simulate the 
experiments for 5 times. For each simulation, we then calculate the accuracy, and finally the 
average of them can be obtained. 

 
4.3. The Learning Stage Using FRBCS 

In order to execute Chi’s Algorithm, there are some parameters that should be defined, 
as follows: numbers of fuzzy labels/linguistics values and types of membership functions. In this 
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research, we set the numbers of fuzzy labels to be 3 and the membership function type to be 
triangular. So, if we assume minimum and maximum values of the parameter X1 to be 0.29 and 
5.8, we can visualize degrees of membership function as illustrated in Figure 3. It can be seen 
that the domain space of X1 is divided by 3 fuzzy labels with the triangular membership function 
equally. In this case, the fuzzy labels are represented by the general codes “S1”, “M”, “B1”. Of 
course, we can change them to be “Small”, “Medium”, and “Big”. It should be noted that the 
m(X1) represents the degree of membership function that has a value between 0 and 1. 

 
 

 
 

Figure 3. Membership function and their degree of the parameter X1 with 3 fuzzy labels 
 
 

5. Results and Discussion 
As we mentioned in Figure 1, the model constructed by FRBCSs contains two parts: 

database and rule base. While database can be illustrated as in Figure 3 for all parameters, rule 
base is a set of fuzzy rules that generated by learning from data training. For example, in the 
first simulation of 5-fold cross validation, we obtained 60 fuzzy rules generated on the learning 
step, as shown in Table 2. As we mentioned previously, these rules are produced by Chi’s 
algorithm including structure identification and parameter estimation.  

 
 

Table 2. Some Examples of Fuzzy Rules Generated by FRBCS 
Index Rule X1 X2 X3 X4 … X47 X48 X49 Label 

1st S1 M M M … M M M Ma 

2nd S1 S1 S1 S1 … M M M Fe 

… … … … … … … … … … 

60th S1 S1 M S1 … S1 M M Ma 

 
 
For example, on the first rule we obtain the following fuzzy rule: 
 

IF X1 is S1 and X2 is M and X3 is M and X4 is M and … and X47 is M and X48 is M 
and X49 is M THEN Label is Male” 
 
After generating the FRBCS model, we can perform prediction over data testing of 5-

fold cross validation. Table 3 shows the results over 15 points of data testing on 5 simulations. It 
should be noted that “Ma” and “Fe” mean male and female, respectively. So, in these 
experiments the accuracies of 5 simulations are 73.33%, 86.67%, 86.67%, 80%, and 53.33%, 
and their average is 76%. Moreover, we can see that the system has failed to predict 18 
samples. From these incorrect prediction, we can see that it has predicted male for 14 female 
labels and predicted female for 4 male labels. It means that the system pretend to predict male 
rather than female. However, in general speaking, we can state that the system can provide 
reasonable results.  

Some comparison can be also done with the some previous works. For example, in the 
research of [6] that used Gaussian Mixture Models, the results showing the gender detection 
rate is 67.57%. The research using random forest and kernel discriminant analysis provided the 
accuracy 74.05% for gender prediction [7]. Moreover, in the research conducted by Hartley [21] 
the average success rate for classifying gender from handwriting is between 57% and 78%. It 
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mean that the proposed model can improve the accuracy rate of the previous research. 
Furthermore, we also provide the understandable model built in fuzzy rule based systems. 

 
 

Table 3. Results: Predicted and Actual Values on 5-Fold Cross Validation 
5-fold cross validation 

1st fold 2nd fold 3rd fold 4th fold 5th fold 

Act. Pred. Act. Pred. Act. Pred. Act. Pred. Act. Pred.  

Ma Fe Ma Ma Fe Fe Fe Ma Fe Ma 

Ma Ma Fe Fe Ma Ma Fe Fe Fe Fe 

Fe Fe Fe Fe Fe Fe Fe Fe Fe Ma 

Fe Fe Ma Ma Ma Fe Fe Fe Ma Ma 

Ma Ma Fe Fe Ma Ma Fe Ma Fe Ma 

Fe Fe Fe Ma Fe Fe Fe Ma Ma Ma 

Fe Fe Fe Fe Ma Ma Ma Ma Ma Ma 

Fe Fe Ma Ma Fe Fe Ma Ma Fe Ma 

Fe Ma Ma Ma Fe Fe Ma Ma Fe Ma 

Ma Ma Fe Fe Fe Ma Ma Ma Ma Ma 

Ma Ma Fe Ma Ma Ma Fe Fe Fe Fe 

Ma Fe Ma Ma Ma Ma Fe Fe Fe Ma 

Fe Fe Ma Ma Ma Ma Ma Ma Ma Ma 

Ma Ma Fe Fe Ma Ma Ma Ma Fe Fe 

Fe Ma Ma Ma Ma Ma Ma Ma Ma Fe 

 
 

6. Conclusions 
The main contributions on this research in on developing a model and its 

implementation to predict gender from handwriting have been proposed. It consists of the 
following steps: determining some important features based on graphology techniques, 
collecting data, image processing on obtained data, and implementing Fuzzy Rule-Based 
Classification Systems using Chi’s Algorithm. Moreover, some experiments are provided to 
validate and test the model and system by conduction 5-fold cross validation. The simulations 
show reasonable results, where the average accuracy is 76%. 

In the future work, some methods and their software libraries can be utilized to predict 
the gender according to the handwriting, as the following research: RoughSets [22-23], a 
combination of Dempster Shafer and Naïve bayes [24], and Fuzzy C-Means [25].  
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