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Abstract 
 In this paper, we evaluate outage probability (OP) of a cluster-based multi-hop protocol operating 

on an underlay cognitive radio (CR) mode. The primary network consists of multiple independent 
transmit/receive pairs, and the primary transmitters seriously cause co-channel interference (CCI) to the 
secondary receivers. To improve the outage performance for the secondary network under the joint impact 
of the CCI and hardware imperfection, we employ the best relay selection at each hop. Moreover, the 
destination is equipped with multiple antennas and uses the selection combining (SC) technique to 
enhance the reliability of the data transmission at the last hop. For performance evaluation, we first derive 
an exact formula of OP for the primary network which is used to calculate the transmit power of the 
secondary transmitters. Next, an exact closed-form expression of the end-to-end OP for the secondary 
network is derived over Rayleigh fading channels. We then perform Monte-Carlo simulations to validate 
the derivations. The results present that the CCI caused by the primary operations significantly impacts on 
the outage performance of the secondary network. 

  
Keywords: cluster-based multi-hop network, co-channel interference, hardware impairments, outage 
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1. Introduction 

Nowadays, wireless communication systems have become popular in the community. 
Then, more frequency bands are required to support wireless devices, which increase more and 
more rapidly. To cope with the scarcity of spectrum, the concept of cognitive radio (CR) was first 
proposed by Mitola et al. [1] in 1998. In CR, the licensed users (primary users) and unlicensed 
users (secondary users) can use the same licensed bands so that the primary users’ quality of 
service (QoS) is still guaranteed. However, the performance of the secondary networks is 
seriously degraded due to the co-channel interference (CCI) from the primary transmitters and 
the limited transmit power. In [2], Ghasemi et al. proposed a fundamental CR model, where the 
secondary transmitter may share the frequency bands with its licensed owner. Moreover, the 
authors also evaluated the channel capacity under different fading distributions, i.e., additive 
white Gaussian noise (AWGN), log-normal shadowing, Rayleigh fading, Nakagami fading. In [3], 
the authors proposed an optimal power allocation method to enhance outage performance and 
ergodic outage capacity for the CR network under the primary user outage constraint. Published 
work [4] investigated the impact of power allocation on the performance of bi-directional CR 
networks. A spectrum-sharing scheme in underlay cognitive multicast network was  
proposed in [5, 6], where an optimal power allocation problem is formulated under the primary 
user’s outage constraint, and cognitive base station’s average transmit power constraint. The 
authors of [7], the authors considered optimal power allocation strategies for conventional  
non-CR, CR and Green CR networks via outage capacity, ergodic capacity as well as  
minimum-rate capacity. Researchers in [8] studied a resource allocation scheme for CR 
networks with primary user secrecy outage constraint.  

Multi-hop network [9-12] is an efficient approach to transmit data from the source to an 
intended destination over long distances without using high transmit power. Employing  
hop-by-hop strategy, an intermediate relay on the source-destination route receives the data 
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from the previous node and forwards it to the next hop. Recently, the multi-hop relaying 
protocols were proposed to improve the end-to-end performance for the CR networks [13-18]. 
The authors of [13-18] investigated the trade-off between security and reliability for  
cluster-based multi-hop CR networks. In [14, 15], the end-to-end throughput for the underlay 
multi-hop CR networks was measured, where transmit power of the secondary transmitters is 
constrained by the maximum interference threshold required by the primary and the energy 
harvested from a power beacon. However, the published works [13-15] did not study the impact 
of the primary interference on the performance of the secondary network. The authors of [16] 
investigated the impact of primary network interference on the performance of the cognitive 
multihop network using MIMO-based relaying approaches. Nevertheless, this published 
literature has assumed that all the channel links are subject to independent and identically 
distributed (i.i.d.) Rayleigh fading. However, in practice, the fading channels are often 
independent and non-identically distributed (i.n.i.d.) due to the different positions of  
the nodes [17, 18].  

Motivated by mentioned above, this paper studies the end-to-end outage probability 
(OP) of the multi-hop CR network in the presence of multiple primary transmitter/receiver pairs. 
Due to the mutual effect, we investigate the cross interferences between the two networks 
which are modeled by i.n.i.d. Rayleigh fading channels. The contribution of this paper can be 
summarized as follows: 
a) We consider a practical model where hardware transceiver of the terminals is not  

perfect [19-22]. In addition, we investigate the impact of the CCI caused by the primary 
operations on the outage performance of the secondary network. Moreover, we derive an 
expression of OP for the primary network, which is used to calculate the transmit power of 
the secondary transmitters including source and relays. 

b) We derive an exact closed-form expression of the end-to-end OP for the secondary 
network under the joint impact of multiple interference constraints and hardware noises. 

c) Monte Carlo simulations are performed to verify the theoretical results. 
The rest of this paper is organized as follows. The research methodology, which 

includes the systemic model of the proposed protocols and key targets presents in section 2. 
The simulation results show in section 3, and section 4 concludes this paper. 
 
 

2.    Research Method 
2.1. System Model 

This paper studies the multi-hop CR network, operating on the decode-and-forward 

(DF) relaying fashion. As illustrated in Figure 1, there are L primary transmitter/receiver pairs in 

the primary network denoted by PT ,PRi i
 where 1,2,...,i L . In the secondary network, an 

K hop relaying scheme including a source 
0S , a destination SK

, and 1K  intermediate 

clusters between 
0S  and SK

 is employed to relay the source data to the destination. Assume 

that there are 
kN  nodes in the thk  cluster, where 1,2,..., 1k K  . At each cluster, only a 

node is selected to forward the source data to the next hop, and the selected node of the thk 
cluster is denoted by Sk

. Assume that the source, the relays and the primary nodes have a 

single antenna, and operate on a half-duplex mode, while the destination SK
 is equipped with 

M  antennas, and uses the selection combining (SC) technique to combine the received data. 

As a result, the data transmission is realized via K  orthogonal time slots. For example, at the 

thk  time slot, the node 
1Sk
 transmits the source data to the node  S 1k k K  .  

Let us denote XY  as channel gain of the X Y  link, where  , PT ,PR ,Si i kX Y . 

Assume that all of the channels are Rayleigh fading, hence 
XY  is an exponential random 

variable (RV) whose parameter [23-25] is 
XY XYd  , where   is path-loss exponent, and 

XYd is link distance between the nodes X and Y. Particularly, cumulative distribution function 

(CDF) and probability density function (PDF) of 
XY  can be given, respectively as 
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       1 exp , exp .
XY XYXY XY XYF x x f x x         (1) 
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Figure 1. System model of the proposed scheme.  
 

 

It is noted that the channel gain between the selected relay 
1SK
and the thm antenna 

of the destination is denoted by 
1S Sm

K K




, where 1,2,...,m M . During the data transmission 

between the nodes 
1Sk
 and Sk

, the instantaneous channel capacity of the PT PRi i  link can 

be given as 
 

   
1
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1,

1
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1 1
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

 (2) 

 

where 1/ K  indicates that the secondary data transmission is split into K  time slots. The
PP  is 

transmit power of the primary transmitters, 
S, -1kP  is transmit power of 

1Sk
, 

0N  is variance of 

Gaussian noise which is assumed to be same at all of the receivers, 2
PP  is total hardware 

impairment level caused by the primary transmitter and the primary receiver, and 2
SP  is total 

hardware impairment level caused by the secondary transmitter and the primary receiver [13]. 

Moreover, in (2), 
2
PP P PTPRi i

P   is noise generated by the hardware imperfection at PTi
 and PRi

 

 2
PP P PT PR

1,

1
j i

L

j j i

P 
 

   is power of the CCI caused by  PTj j i , and  
1

2
SP S, -1 S PR1

k ikP 


  

is power of the CCI caused by 
1Sk
.  

Now, we introduce the relay selection method proposed in this paper. Firstly, let us 

denote 
1 2R ,R ,...,R

kN
 as the nodes in the thk  cluster. Similar to (2), the instantaneous 

channel capacity of the 1S Rk t   link is calculated by: 
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where 2
SS  is total hardware impairment level caused by the secondary transmitter and the 

secondary receiver, and 2
PS  is total hardware impairment level at the primary transmitter and 

the secondary receiver. 

Using (3), we propose a relay selection method at thk   hop as  

 

 
1 1S S S R

1,2,...,
S : max .

k k k t
k

k
t N

C C
 

   (4) 

 

in (4) implies that the relay   1S S ,...,k k kN N  is chosen to maximize the data rate at this 

hop. Let us consider the data transmission at the last hop; with the SC combiner, the channel 
capacity obtained at the destination can be formulated by 

 

 
1

1

1 , ,
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
 (5) 

 

2.2. Outage probability (OP) of primary network 

At first, OP of the PT PRi i link in the thk   time slot defines as follows 

 

 
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1
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 (6) 

 

where 
PR  is the target rate of the primary network, and  P P2^ R 1.K    Next, we can 

rewrite (6) under the following form: 
 

     
1

P 2 2 2
PP P P PTPR PP P P PT PR SP P S, -1 S PR 0 P

1,
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 

  (7) 

 

from (7), we have POP 1i   when 2
PP P1 0   , and if 2

PP P1 0   , we obtain 
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  (8) 

 

where  2
P P PP P/ 1 .      Moreover, POPi

 in (8) can be expressed as: 
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(9) 
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substituting CDF of 
PTPRi i
 , PDFs of PT PRj i

  and 
1S PRk i




 given by (1) into (9), after some 

manipulations, we obtain an exact closed-form expression of POPi
 as: 

 

   
1

1
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2 2
1,S PR P PT PR SP P S, -1 PT PR PT PR PP P

0
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  
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 


 

(10) 
 
Finally, we define OP of the primary network as the probability that there exists at least 

one PT/PR pair in outage. Due to the independence between the pairs, we can calculate OP of 
the primary network when the node 

1Sk
 uses the licensed band as follows: 
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

 

(11) 
 

2.3. Transmit Power of Secondary Transmitters 
Firstly, to guarantee QoS for the primary network, the transmitter 

1Sk
 must adjust its 

transmit power so that P
Tot OPOP  , where 

OP is a predefined tolerable error probability 

required by the primary network. Moreover, 
S, -1kP  is also constrained by the maximum transmit 

power denoted as
SP , i.e., 

S, -1 SkP P  . Let us consider P
TotOP  as a function of 

S, -1kP , i.e., 

 P
Tot S, -1OP kg P , where  .g is a function given in (11). As we can observe,  S, -1kg P  is an 

increasing function with respect to 
S, -1kP . If   OP0g  , the QoS primary network is not 

satisfied, and hence the transmitter 
1Sk
is not allowed to access the licensed band, and 

S, -1kP  

must be set to zero. To determine 
S, -1kP , we propose a simple algorithm as Table 1. In Table 1, 

 is a predetermined value. 

 
 

Table 1. Proposed Algorithm.  
Steps Procedures 

    1 
 
    2 
     

3 

Calculating  0g ; if   OP0 ,g  S, -1 0kP  ,  else go to Step 2. 

Calculating  Sg P ; if  S OPg P  , S, -1 SkP P , else go to Step 3. 

Setting S,min 0P  , S,max SP P , flag 0 ; 

while flag = 0 

      S, -1 S,min S,max / 2;kP P P   calculating  S, -1kg P ; 

      if   OP S, -10 kg P    , flag = 1 

      else if  S, -1 OPkg P  ,  S,min S,min S,max / 2P P P   

      else if  S, -1 OPkg P  ,  S,max S,min S,max / 2P P P   

end 
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2.4. End-to-end OP of Secondary Network 

At first, we can formulate the outage probability at the -thk  hop  k K  by: 
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 
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
 

(12) 
 

where 
SR  is the target rate of the secondary network, and  S S2^ R 1.K   From (12), 

SOP 1k   as 2
SS S1 0   , and as 2

SS S1 0   , with the same manner as derived POPi
, we 

have 
 

   

     

 

1

S R PT R PT R1 1

1

2 2
SS S S, -1 S R PS S P PTR 0 S

1

2 S P 0 S
PS 1 1

0 0
S, -1 S, -11

PTS S, -1

2
1 PTS S, -1 PS S S S P

Pr 1 1

... 1 ... ...

1
1

k t i t

k t t L t

i k

i k k k

L

k

i

L

i L L

k ki

L
k

i k

P P N

P N
F x f x f x dx dx

P P

P

P P

  

      

 




   









 





 
    

 

 
    

 


 

 




 

 1S S 0 S

S, -1

exp ,k k

k

N

P

 


  
       

 

(13) 
 

where  2
S S SS S/ 1 .      Substituting (13) into (12), we obtain: 
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similarly, the outage probability at the last hop can be calculated by: 
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then, the end-to-end OP is expressed by an exact closed-form formula as: 
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(16) 
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3. Results and Discussions 
In this section, we provide Monte Carlo simulations to verify the expressions derived in 

section 2. For simulation environment, we consider a two-dimensional Oxy network, where the 
secondary nodes are placed on a straight line, and the position of Sk

 is  / ,0k K , where 

0,1,2,..., ,k K the primary transmitter PTi
 is placed at     1 / 1 ,3/ 4i L  , and the position 

of the primary receiver PRi
 is     1 / 1 ,1/ 2i L  . In all of the simulations, we fix the path-loss 

exponent by 3  3  , and the variance of Gaussian noise by 1  0 1 .N   

 
3.1. Verification of P

TotOP  in (11) 

Figure 2 presents the outage probability of the primary network  P
TotOP  as a function of 

the transmit power of the secondary source with various number of the primary pairs. In this 
figure, the transmit power of the primary transmitters  PP  is set by 10 dB, the number of hops 

between the source and destination  K  is fixed by 3, the hardware impairment levels on the 

links are assigned by 2
PP 0  , 2 2

PS SP 0.08   , and the target rate of the primary network 

 PR  is set by 0.05. In Figure 2, we assume that the secondary source  0S  is allowed to use 

its maximum transmit power  SP  to send the data to the selected relay at the first cluster  1S . 

As we can see, the value of OP increases with the increasing of 
SP . Moreover, when the 

number of the primary pairs ( L) is high, the outage performance is severely degraded due to 
impact of more CCI generated from the primary transmitters. Finally, it is observed  
from Figure 2 that the simulation results (Sim) match very well with the theoretical results 
(Theory), which hence validates the correction of the derivation of (11).  

 
 

 
 

Figure 2. OP of the primary network as a function of the transmit power of the secondary source 

in dB when P 10P  dB, 3K  , 2
PP 0  , 2 2

PS SP 0.08   , and P 0.05.R   

 
 

3.2. Transmit Power of Secondary Transmitters  
Figure 3 presents the transmit power of the secondary transmitters (in Watt) with 

different target rate ( PR ) when the required QoS of the primary network is OP 0.01  . As 

observed, the value of  S,kP
 
increases as the PR  

value decreases. In Figure 3, when P 0.1R 
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all of the values of S,kP  equal to zero. It is due to the fact that since the primary network is not 

satisfied the QoS, all of the secondary transmitters are not allowed to used the licensed bands. 
We also see that when 

P 0.1R  , the secondary users can access the bands. In addition, the 

transmit power of the source 
0S , as we can see, is lowest. It can be explained that because the 

distance between the source and the primary receiver 
1PR  is shortest, hence it must reduce 

the transmit power to avoid being harmful the primary QoS. 
 
 

 
 

Figure 3. Transmit power of the secondary users with various values of 
PR when 

P 15P  dB, 

S 10P  dB, 5K  , 2,L  2
PP 0  , 2 2

PS SP 0.1   , 
OP 0.01   

and 1/10^6. 
 

 
 

3.3. End-to-end outage probability of secondary network  
In Figure 4, we investigate the impact of hardware impairment level on the end-to-end 

OP of the secondary network. Particularly, the hardware impairment level of the secondary links 

 2
SS varies from 0 to 2, while the hardware impairment levels of the interference links are set 

by 2 2 2
PS SP SS / 2    . In this figure, the number of nodes at each cluster is fixed by 4, and the 

number of antennas at the destination is set by 2. It is seen from Figure 4 that the value of OP 
increases with the increasing of 2

SS . Moreover, the outage performance is also worse when the 

number of the primary pairs increases. Specially, when 4L , the value of OP equals 1 since 
the secondary network is not allowed to use the licensed bands. 

Figure 5 presents the end-to-end OP of the secondary network as a function of the 

number of hops. In this figure, we assume that kN N   for all k, and N M . From Figure 5, 

we see that there exists an optimal value of K
 
at which the value of the end-to-end OP is 

lowest. Moreover, the outage performance of the proposed protocol can be enhanced by 
increasing the number of relays at each cluster and the number of antennas at the destination. 
From Figures 4 and 5, it is worth noting that the simulation and theoretical results are in a good 
agreement which verifies our derivations. 

0 1 2 3 4
0

1

2

3

4

5

6

7

8

9

10

S
k

T
ra

n
s
m

it
 P

o
w

e
r

 

 

R
P
 = 0.1

R
P
 = 0.075

R
P
 = 0.06

R
P
 = 0.04



TELKOMNIKA  ISSN: 1693-6930  

 

Performance of cluster-based cognitive multihop networks under joint... (Pham Minh Nam) 

57 

 
 

Figure 4. End-to-end OP as a function of 2
SS  when 

P 25P  dB, 
S 10P  dB, 4K  , 4,kN 

2,M  2
PP 0  , 

P S 0.025,R R  2 2 2
PS SP SS / 2    , 

OP 0.05   
and 1/10^6.   

 
 

 
 

Figure 5. End-to-end OP as a function of K  when P 20P  dB, S 10P  dB, 2L , 

P S 0.05,R R  2 2 2
PS SP SS 0     , 

OP 0.01   
and 1/10^6.   
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4. Conclussion 
In this paper, we investigated the outage performance of the cluster-based underlay 

cognitive radio network in the presence of multiple primary transmit/receive pairs, in terms of the 
end-to-end outage probability under the joint impact of hardware impairments and co-channel 
interference. The results showed that the performance of the secondary network is limited by 
the number of the primary pairs and the co-channel interference caused by the primary 
transmitters. The performance for the secondary network can be enhanced by increasing the 
number of nodes at each cluster, increasing the number of antennas at the destination, and 
designing the number of hops between the source and the destination appropriately. 
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