
TELKOMNIKA Telecommunication, Computing, Electronics and Control

Vol. 18, No. 1, February 2020, pp. 530~537

ISSN: 1693-6930, accredited First Grade by Kemenristekdikti, Decree No: 21/E/KPT/2018

DOI: 10.12928/TELKOMNIKA.v18i1.12169  530

Journal homepage: http://journal.uad.ac.id/index.php/TELKOMNIKA

A review on serverless architectures - function as a service

(FaaS) in cloud computing

Arokia Paul Rajan R
Department of Computer Science, CHRIST (Deemed to be University), Bengaluru

Article Info ABSTRACT

Article history:

Received Dec 30, 2018

Revised Nov 5, 2019

Accepted Nov 30, 2019

 Emergence of cloud computing as the inevitable IT computing paradigm,

the perception of the compute reference model and building of services has

evolved into new dimensions. Serverless computing is an execution model in

which the cloud service provider dynamically manages the allocation of
compute resources of the server. The consumer is billed for the actual volume

of resources consumed by them, instead paying for the pre-purchased units of

compute capacity. This model evolved as a way to achieve optimum cost,

minimum configuration overheads, and increases the application's ability to
scale in the cloud. The prospective of the serverless compute model is well

conceived by the major cloud service providers and reflected in the adoption

of serverless computing paradigm. This review paper presents a

comprehensive study on serverless computing architecture and also extends an
experimentation of the working principle of serverless computing reference

model adapted by AWS Lambda. The various research avenues in serverless

computing are identified and presented.

Keywords:

AWS lambda

Cloud computing

FaaS

Google cloud function

Microsoft Azure function

Serverless computing

This is an open access article under the CC BY-SA license.

Corresponding Author:

Arokia Paul Rajan R,

Department of Computer Science,

CHRIST (Deemed to be University),

Bengaluru, India.

Email: arokia.rajan@christuniversity.in

1. INTRODUCTION

Cloud computing is the on-demand consumption of compute power, storage, database, applications,

and any IT resources through the Internet following pay-as-you-go pricing model [1]. The most basic way to

define what the 'Cloud' is that it is a computer located somewhere else that is accessed via the Internet and

utilized in some way. Web services is also another name for what people call the cloud. The cloud is comprised

of server computers located in different locations around the world [2]. When we use a cloud service like

Amazon web services (AWS) or Google Cloud architecture or Microsoft Azure, we are actually utilizing

the computers belonging to these cloud service providers [CSPs].

The principle of cloud computing is remaining as it is, but, the need for shared working principle,

enhancements in fast response of the services, agility of resource provisioning, and minimized management

hurdles has been the targets of hyper scale CSPs [3]. Inspecting the level of capital investment and management

involved to reach the above objectives, there are many researches proposed several reference models. Hyper

scale data centers will grow from 338 in number at the end of 2016 to 628 by 2021 [4]. They will represent

53 percent of all installed data center servers by 2021. This kind of drastic increase in the computational

requirements, there is a need for transforming the ‘traditional data centers’ into ‘hyper scale datacenters’

sophisticated with high levels of abstraction and virtualization. Recent technical advancement in

https://creativecommons.org/licenses/by-sa/4.0/
mailto:arokia.rajan@christuniversity.in

TELKOMNIKA Telecommun Comput El Control 

A review on serverless architectures - function as a service (FaaS) in cloud computing (Arokia Paul Rajan R)

531

the virtualization technologies which are very promising to achieve hyper scale data

centres easily.

Figure 1 represents the evolution stages of cloud computing. In the initial stages virtualization used as

the mean for software and service consolidation by which attained the maximum utilization of

the resources and easy management. During the initial phase, there was a common sharing of hardware. In

the next phase, there was a pool of virtual machines (VMs) created on a server and each VM carry a copy of

an operating system. Later, it advanced into the concept of containers where it included, OS level

virtualization [5]. The containers are the platform sufficient enough to hold the resources needed for running a

specific application. It achieved higher abstraction of resources comparing with VMs. In containerization,

resource provisioning is much faster than VMs.

Apart from the efficiencies and faster rate of provisioning of resources through containerization,

further enhancements are constrained with the basic infrastructural elements called servers. Serverless

computing is a model of pooling and utilizing the resources which includes OS, runtime environments and

hardware [6]. Figure 2 presents the evolution of serverless computing from containerization.

Serverless computing or function-as-a-service (FaaS) is defined as a software architecture where an

application is decomposed into ‘triggers’ (events) and ‘actions’ (functions), and there is a platform that provides

a seamless hosting and execution environment [7]. The application developer’s concern only for light weighted

and stateless functions that can be executed through an API based on the on-demand principle. The application

consumes the resources to the point of execution and later the resources are released. The price model includes

only the amount of time in which the resources were in use and the application developer need not to pay for

resources until they are executed, thus it is referred to as ‘serverless’.

In serverless computing, the responsibilities of the cloud service provider include the management of

the data centre, server and the runtime environment. A contrast to the other cloud models, the more

responsibility is vested on the shoulder of cloud service provider and the developer is relieved with

the management and maintenance complications any further [8].

The rest of the paper is structured as follows: Section II presents the detailed study of related works

on the conceptualization of serverless computing. Section III presents a few enterprise use cases fitting to

the serverless computing. Section IV shows the comparison of features by the top FaaS service providers.

Section V presents a demonstration to understand the working principle of serverless computing using AWS

Lambda. Section VI presents a few technical difficulties and research gaps in FaaS. Section VII concludes by

reinstating the significance of the serverless computing paradigm.

Figure 1. Evolution of sharing resources

  ISSN: 1693-6930

TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 1, February 2020: 530 - 537

532

Figure 2. Sharing resources in serverless computing

2. RELATED WORKS

Born from a need to make platform as a service (PaaS) more accessible, fine-grained, and affordable,

serverless computing has garnered interest from both industry and academia. The work [9] aims to give an

understanding of these early days of serverless computing: what it is, where it comes from, what is the current

status of serverless technology, and what are its main obstacles and opportunities. T. Lynn, et al., [10] provides

a review and multi-level feature analysis of seven enterprise serverless computing platforms. It reviews extant

research on these platforms and identifies the emergence of AWS Lambda as an actual base platform for

research on enterprise serverless cloud computing.

A novel design of performance-oriented serverless computing platform deployed in Microsoft Azure,

and utilizing Windows containers as function execution environments [11]. There are metrics proposed to

evaluate the execution performance of serverless platforms and conduct tests with the proposed prototype.

The measurements showed significant improvement in achieving greater throughput than other platforms at

most concurrency levels. The other platform alternatives [12] to AWS Lambda, no discrete academic

researches using Azure Functions, Google Cloud Functions, IBM Bluemix OpenWhisk, Iron.io Ironworker,

Webtask, Galactic Fog Gestal Laser were identified.

J. Short, et al., [13] presented three demonstrators for IBM Bluemix OpenWhisk. They demonstrate

event-based programming triggered by weather forecast data, Apple WatchOS2 application data, and speech

utterances. It also demonstrated a chatbot using IBM Bluemix OpenWhisk that calls on IBM Watson services

including news, jokes, dates, weather, music tutor and an alarm service. [14] conducted a survey on the existing

serverless platforms from industry, academia, and open source projects, key characteristics and use cases, and

describe technical challenges and open problems. This work presented a hands-on experience of using

the serverless technologies available from different cloud providers such as IBM, Amazon, Google

and Microsoft.

Z. Al-Ali [15] designed ServerlessOS, comprised of three key components: (a) a new desegregation

model, which leverages desegregation for abstraction, but enables resources to move fluidly between servers

for performance, (b) a cloud orchestration layer which manages fine-grained resource allocation and placement

throughout the application's lifetime via local and global decision making, and (c) an isolation capability that

enforces data and resource isolation. [16] proposed an efficient resource management system for serverless

cloud computing frameworks with the goal to enhance resource with a focus on memory allocation among

containers. The design added a layer top of an open-source serverless platform, OpenLambda. It is based upon

application workloads, and serverless function’s memory needs events are triggered. The memory limits also

lead to variations in the number of containers spawned on OpenLambda.

3. ENTERPRISE USECASES FOR SERVERLESS COMPUTING

Proper investigation of the nature and need of recent use cases of the enterprises, serverless computing

becomes inevitable move to fulfill the requirements. The scenarios include event processing with big data, API

orchestration among the vendors, consolidation of APIs to minimize API calls, process monitoring, and

execution control for tracking the issues. The following are some of the best fit use cases for serverless

computing [17]:

− Use case 1: event-triggered computing

TELKOMNIKA Telecommun Comput El Control 

A review on serverless architectures - function as a service (FaaS) in cloud computing (Arokia Paul Rajan R)

533

In multimedia processing business applications, huge volumes of files are frequently uploaded to Object

Storage Services [OSS] for processing. The requirements may be such as transcoding, watermarking,

fetching the data. This business scenario involves a variety of devices like desktop computers or PDAs or

mobile phones accessing different file types of uploading multimedia content such as images, videos, and

text files. Event-triggered computing will be a solution for addressing many technical difficulties by event-

triggered computing.

− Use case 2: live video broadcasting

In live video broadcasting scenarios, the broadcasting synthesizing node receives audio and video streams

from the hosts. The collected data can be synthesized based on the function computing. Finally,

the synthesized video stream needs to be pushed to Content Delivery Network [CDN].

− Use case 3: IoT data processing

IoT framework needs an efficient function computing design that can receive status data from a variety of

connected smart devices. Also, it needs an efficient event-based computing architecture to transmit

the processed data to other devices or storing into the database [18].

− Use case 4: shared delivery system

A global group of restaurants or a product-based company may need an event-based notification system to

the nearest delivery personnel to pick up from the nearest seller for the product delivery. Though

event-based computing is applicable in many such use cases, but it is not a one-size-fits-all solution. If

the requests are not having significant fluctuations in the use case 4, then function computing may be a

wrong choice of solution design [19].

4. COMPARISON OF TOP SERVERLESS COMPUTING CLOUD SERVICE PROVIDERS

In a short period, the serverless technology gained a lot of momentum in the industry. Table 1 presents

the comparison of various features provided by the pioneers of FaaS providers [7, 20-23].

Table 1. Comparison of features
 AWS Lambda Google Cloud Function Microsoft Azure Function

Introduction 2015 2016 2016

Scalability Automatic Automatic Automatic

Max functions Unlimited 20 per project
Depends on the trigger & available

resources

Supported languages
Javascript, Java, Python,

NodeJS
Javascript C#, F#, NodeJS, Python, PHP, Bash

Concurrent execution
100 parallel executions per

account
Unlimited Based on App service

Deployment ZIP uploads ZIP uploads, Cloud storage Git integrated, REST API

Memory allocation Per function Not specific Per App service

Licensing Closed source Open source Open source

Pricing model Pay as code executes Pay as code executes Pay as code executes

Event driven

architecture

S3, SNS, Dynamo DB,

Kinesis, Cloud Watch

Cloud Pub, Cloud storage

objects
Azure and third-party services

5. DEMONSTRATION OF SERVERLESS COMPUTING USING AWS LAMDA

The objective of the experiment carried out in this paper is to demonstrate the method of configuring

AWS Lambda for responding the notifications from the Auto Scaling Group. Table 2 presents the glossary of

AWS services used to accomplish the objective of the experiment [24]. Figure 3 presents the demonstration

scenario which aims to create an event-driven computing function.

Table 2. AWS services
S.No. Service Purpose

1 Auto Scaling Group
Logical grouping of EC2 instances with same features used for

the scale management.

2 Simple Notification Service [SNS]
Service used for delivery of messages in bulk, especially for

the mobile users.

3 IAM
Identity and Access Management is a service which provides a secure

way of assessing AWS resources.

4 AWS Lambda

Event-driven, serverless computing platform service that runs code in

response to events and automatically manages the computing resources

required by that code [20].

5 Cloud Watch
It is a service used to receive and monitor log files, set alarms, and

automatically respond to changes in AWS resources [20].

  ISSN: 1693-6930

TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 1, February 2020: 530 - 537

534

Figure 3. Scenario of the demonstration

5.1. Demonstration Setup

Some of the AWS services can automatically generate notifications when an event occurs. Such

notifications can be used as a trigger to automate actions without requiring human intervention. In is section,

an illustration has been presented to understand how a serverless architecture is working [25]. The scenario is

to use AWS Lambda function that will automatically snapshot and attach a new AWS EC2 instance launched

by the auto scaling group. In this illustration, an auto scaling group has been already configured. Table 2 shows

the variety of AWS services incorporated to accomplish the objective of the demonstration.

The following steps are carried out in order to achieve the objective of this illustration:

− Login into AWS account and open the console

− Create an SNS topic

a. Click ‘Get started’

b. Create ‘Topic’ with the topic name.

c. Click ‘create topic’

− Configure Auto Scaling to send Event

a. On the ‘Services’, click EC2

b. Select ‘Auto Scaling Groups’

c. Click ‘Notifications’ tab

d. Click ‘Create notification’

e. Confirm ‘ScaleEvent’ is selected in ‘Send a notification to’

f. In ‘Whenever Instances’ select ‘launch’.

g. Save.

− Create an IAM role for the Lambda function

a. In ‘Services’, click ‘IAM’

b. Click ‘Roles’.

c. Click ‘Create Role’

d. Select ‘AWS Service’

e. Select use case as ‘Lambda’.

f. Give the permission as ‘AmazonEC2FullAccess’.

g. Give a Role Name.

h. Click ‘Create role’.

− Create a Lambda Function

a. Select ‘Lambda’ from ‘Services’.

b. Create a ‘Function’

c. Configure the Name, Runtime and Role.

d. Add the Function code using Python.

e. Add ‘Triggers’ on ‘Scale Event’

− Auto Scaling Group Scaling out to trigger the Lambda function.

a. Select ‘EC2’ in ‘Services’.

b. Edit Scaling Group with desired instances as 2.

c. Create the ‘Snapshots’ which is created by the Lambda function.

Figure 4 shows the Python code which creates trigger on the event of scaling out. Figure 5 shows

the creation of a trigger (event) for the Lambda function.

TELKOMNIKA Telecommun Comput El Control 

A review on serverless architectures - function as a service (FaaS) in cloud computing (Arokia Paul Rajan R)

535

Figure 4. Creating AWS Lambda using Python in the code window

Figure 5. Creating trigger for the Lambda

  ISSN: 1693-6930

TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 1, February 2020: 530 - 537

536

5.2. Results

On successful completion of the steps 1 to 6 will create two snapshots that were created by Lambda

function. It is the representation of successful execution of Lambda function of the auto scaling group. If

the snapshots were not created, then the Lambda function either had a failure or was not triggered.

6. RESEARCH AVENUES IN SERVERLESS COMPUTING

Extending the commercial use cases that are presented in Section II would be a better way to explore

new challenges put forth by this new computing architecture. Careful investigation of the literature in

the form of researches and white papers suggests that there are a variety of unattended challenges hidden

despite of its promising predictions. The following are the major categories of challenges identified

by [26, 27]:

− Hardware-level challenges: virtualization of servers, distributed storage and their levels, interoperability of

supporting heterogeneous hardware of vendors, cold starts, optimization of resources, and designing fault

tolerant system architectures.

− Developer-level challenges: lack of tracking and debugging tools, declarative deployment,

the expertization of a programming caliber to cater refactoring of existing systems, ability to integrate and

compose, managing and maintaining, designing stateful and stateless functions, transaction and

concurrency management, optimized code granularity, recovery system design, and adapting DevOps

principles.

− Management-level challenges: fixing the resource limits, resource provisioning and load balancing,

dynamic scheduling, launch overheads, legacy system migration, predictable scalability, and

security mechanisms.

− Business-level challenges: cost estimation, pricing model, managing hybrid cloud, and non-cloud systems

utilizing the serverless architectures.

7. CONCLUSION

Serverless computing is in the stage of conceptualization by the researchers and experimentation by

the industry. It is predicted that the evolution of this new computing paradigm in the Cloud will definitely lead

to a simpler, cheaper and more efficient resource management. It is to be acknowledged that these promises

are based on however such propositions are based on a specific use case with the small scale of deployment by

the industry. The review presented in section 2 and section 3 provides a futuristic dimension for serverless

architectures as a new era of computation which can be adapted for a broader use case. Section 2 also implies

the possibilities of exploring more research avenues for the academic and research community in the arena of

serverless computing.

The principle of serverless computing when deployed in non-cloud systems lead to a new computing

technology known ‘deviceless edge computing’. Serverless and deviceless computing are the new buzz words

in the industry, which paves a way to new research opportunities in the Cloud as well as non-cloud systems.

Since serverless computing is in its infant stage, there are a variety of technical difficulties and challenges that

are unaddressed, such as smooth scaling with a tolerance of network hassles and secured resource provisioning.

Also, section 6 identified a few research directions.

REFERENCES
[1] B. Sosinsky, “Cloud Computing Bible,” 1st ed, Wiley Publishing, 2011.

[2] R A. P. Rajan, “Service Request Scheduling based on Quantification Principle using Conjoint Analysis and Z-score

in Cloud,” International Journal of Electrical and Computer Engineering, vol. 8, pp. 1238-1246, 2018.

[3] L. A. Barroso, et al., “The Datacenter as a Computer: An Introduction to the Design of Warehouse-scale Machines,”
Synthesis Lectures on Computer Architecture, vol. 8, pp. 1-154, 2013.

[4] Cisco, “Cisco global cloud index: Forecast and methodology, 2015- 2020,” CA: Cisco Public, 2018.

[5] Matt Soucoup, “Introduction to Serverless Computing,” Telerik, [Online], Available:

https://www.telerik.com/blogs/introduction-to-serverless-computing, 2018.
[6] Abrams, H., “The Evolution of Serverless Computing,” [Online], Available: https://www.ca.com/us/modern-

software-factory/content/the-evolution-of-serverless-computing.html, 2017.

[7] Amazon, “Building Applications with Serverless Architectures,” [Online], Available:

https://aws.amazon.com/lambda/serverless-architectures-learn-more/.
[8] Ivan Dwyer, “Serverless Computing Developer Empowerment Reaches New Heights,” Iron, [Online], Available:

https://www.iron.io/docs/Whitepaper_Serverless_Final_V2.pdf.

TELKOMNIKA Telecommun Comput El Control 

A review on serverless architectures - function as a service (FaaS) in cloud computing (Arokia Paul Rajan R)

537

[9] E. van Eyk, et al., “Serverless is More: From PaaS to Present Cloud Computing,” IEEE Internet Computing, vol. 22,
pp. 8-17, 2018.

[10] T. Lynn, et al., “A Preliminary Review of Enterprise Serverless Cloud Computing (Function-as-a-Service)

Platforms,” 2017 IEEE International Conference on Cloud Computing Technology and Science (CloudCom), 2017,

pp. 162-169.
[11] G. McGrath, P. R. Brenne, “Serverless Computing: Design, Implementation, and Performance,” 2017 IEEE 37th

International Conference on Distributed Computing Systems Workshops, pp. 405-410, 2017.

[12] P. Castro, et al., “Serverless Programming (Function as a Service),” 2017 IEEE 37th International Conference on

Distributed Computing Systems, pp. 2658-2659, 2017.
[13] J. Short, et al., “Cloud Event Programming Paradigms: Applications and Analysis,” in Proceedings of the 9th IEEE

International Conference on Cloud Computing (CLOUD), pp. 400-406, 2017.

[14] I. Baldini, et al., “Serverless Computing: Current Trends and Open Problems,” Research Advances in Cloud

Computing, Springer, pp. 1-20, 2017.
[15] Z. Al-Ali, “Making Serverless Computing More Serverless,” 2018 IEEE 11th International Conference on Cloud

Computing (CLOUD), pp. 456-459, 2018.

[16] A. Saha and S. Jindal, “EMARS: Efficient Management and Allocation of Resources in Serverless,” 2018 IEEE 11th

International Conference on Cloud Computing (CLOUD), pp. 827-830, 2018.
[17] Eric Jonas, et al., “Cloud Programming Simplified: A Berkeley View on Serverless Computing,” Technical Report

No. UCB/EECS-2019-3, University of California at Berkeley, 2019.

[18] Adhitya Bhawiyuga, et al., “Architectural design of IoT-cloud computing integration platform,” TELKOMNIKA

Telecommunication Computing Electronics and Control, vol. 17, no. 3, pp. 1399-1408, 2017.
[19] Fan and L. Liu, "A Survey of Challenging Issues and Approaches in Mobile Cloud Computing," 2016 17th

International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT),

Guangzhou, pp. 87-90, 2016.

[20] K. Kritikos and P. Skrzypek, “Simulation-as-a-Service with Serverless Computing,” 2019 IEEE World Congress on
Services, Italy, pp. 200-205, 2019.

[21] Leona Zhang, “4 Use Cases of Serverless Architecture,” [Online], Available: https://dzone.com/articles/4-use-cases-

of-serverless-architecture, 2018.

[22] Microsoft, “Azure Functions Documentation,” [Online], Available: https://docs.microsoft.com/en-us/azure/azure-

functions/.

[23] Google, “Google Cloud Functions Documentation,” [Online], Available: https://cloud.google.com/functions/.

[24] Amazon Web Services, “AWS Lambda Developer Guide,” [Online], Available:

http://docs.aws.amazon.com/lambda/latest/dg/lambda-dg.pdf.
[25] S. Hendrickson, et al., “Serverless computation with openlambda,” Hotcloud’16, 2016 USENIX Annual Technical

 Conference, 2016.

[26] Data Center Frontier, “Data Center Developers: Meeting the Challenges of Today’s Requirements,” [Online],

Available: https://datacenterfrontier.com/data-center-developers-meeting-challenges/
[27] D. Gannon, R. Barga and N. Sundaresan, “Cloud-native applications,” IEEE Cloud Computing, vol. 4, no. 5,

pp. 16–21, 2017.

https://dzone.com/articles/4-use-cases-of-serverless-architecture
https://dzone.com/articles/4-use-cases-of-serverless-architecture

