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 Most of vehicle have the similar structures and designs. It is extremely 

complicated and difficult to identify and classify vehicle brands based on their 

structure and shape. As we require a quick and reliable response, so vehicle 

logos are an alternative method of determining the type of a vehicle. In this 

paper, we propose a method for vehicle logo recognition based on feature 

selection method in a hybrid way. Vehicle logo images are first characterized 

by Histograms of Oriented Gradient descriptors and the final features vector 

are then applied feature selection method to reduce the irrelevant information. 

Moreover, we release a new benchmark dataset for vehicle logo recognition 

and retrieval task namely, VLR-40. The experimental results are evaluated on 

this database which show the efficiency of the proposed approach. 
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1. INTRODUCTION 

How to identify a brand and distinguish with the others visually? Each brand has its own logo that 

represent a trademark, contain a certain meaning symbolizing that brand and its manufacturer. To create  

an impressive logo, specific characteristics need to pay attention to many details including: layout, colors, lines, 

angles, and all information must be arranged in coherent and harmony way. Traditional vehicle recognition 

systems identify vehicle based on manual human observations via license plate or model of vehicles. Thus, 

automatic vehicle identification is a key problem in intelligent transportation system. Each vehicle has a unique 

license plate, but it is difficult to track and identify since these images are in very low quality in in smart 

surveillance systems. 

Various works have been proposed for vehicle logo recognition in the past. We briefly review several 

works in this field. For example, Llorca et al. [1] apply histograms of oriented gradients and support vector 

machines (SVM) classifier for vehicle manufacturer recognition. A region of interest is applied before 

extracting histograms of oriented gradient (HOG) features from logo images. Huang et al. [2] propose a system 

for car logo segmentation and recognition based on an efficient pre-trained convolutional neural network 

(CNN) model. Huan et al. [3] present a new algorithm based on Hough transform and Deep Learning is for 

vehicle logo retrieval task which combine shape detection and deep belief networks. Pan et al. [4] use scale 

invariant feature transform (SIFT) descriptor and CNN as the feature extraction method from vehicle logo 

https://creativecommons.org/licenses/by-sa/4.0/


               ISSN: 1693-6930 

TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 6, December 2020:  3019 - 3025 

3020 

images. An enhanced logo-recognition system is presented by Psyllos et al. [5] on the Medialab license plate 

recognition (LPR) dataset. Huang et al. [6] apply Faster-RCNN model with two different CNNs (VGG-16 and 

ResNet-50) for vehicle logo recognition. Sotheeswaran and Ramanan [7] present a study focuses on local 

features that describe structural characteristics of the logo of a car using a coarse-to-fine strategy. Nie et al. [8] 

present a new VLR method based on foreground-background pixel-pair feature. Different hand-crafted 

descriptors (HOG, LBP and SIFT) are applied to extract features. Cyganek and M. Wo´ zniak [9] use ensemble 

classifiers based on higher-order singular value decomposition to classify vehicle logo. More recently, Zhao 

and Wang [10] introduce a modified version of HU invariant moment to represent car logo images. 

Indeed, many machine learning problems in computer vision and several related domains need to deal 

with very high dimensional data. Many of these features may not be relevant for the final prediction task and 

degrade the classification performance. Multiple studies have shown that the classification performance can be 

improved by eliminating these features. These issues can be solved by the method of the dimensionality 

reduction. For this purpose, the dimensionality reduction can be achieved either by feature extraction or feature 

selection to a low dimensional space. Feature extraction refers to the methods that create a set of new features 

based on the linear or non-linear combinations of the original features. Further analysis is problematic since 

we cannot get the physical meanings of these features in the transformed space. Examples of feature extraction 

methods include principal component analysis (PCA) [11], locality preserving projections (LPP) [12]. 

In contrast, the feature selection methods aim at finding adequate subsets of features by keeping some 

original features and therefore maintains the physical meanings of the features. The use of both methods has  

the advantage of improving performance of classification and increasing computational efficiency. Recently, feature 

selection has gained increasing interest in the field of machine learning [13-16], data analysis [17-19], and 

successfully applied in computer vision such as information retrieval [20-22] or visual object tracking [23-25].  

In this work, we focus on the application of feature selection methods to vehicle logo images classification  

by sparsity score. This paper is organized and structured as follows. Section 2 introduces the feature extracting 

methods based on three local image descriptors. Section 2 and 3 present proposed approach and experimental 

results. Finally, the conclusion is discussed in section 4. 

 

 

2. THE FEATURE EXTRACTION AND SELECTION 

2.1.   Histograms of oriented gradient descriptor 

Histograms of oriented gradient (HOG) descriptor is applied for different problems in machine vision 

[26-32]. HOG feature is extracted by counting the occurrences of gradient orientation base on the gradient angle 

and the gradient magnitude of local patches of an image. The gradient angle and magnitude at each pixel are 

computed in an 8 × 8 pixels patch. Next, 64 gradient feature vectors are divided into 9 angular bins 0-180° 
(20°each). The gradient magnitude 𝑇 and angle 𝐾 at each position (𝑘, ℎ) from an image 𝐽 are computed as follows: 

 

∆𝑘= |𝐽(𝑘 − 1, ℎ) − 𝐽(𝑘 + 1, ℎ)|       (1) 

 

∆ℎ= |𝐽(𝑘, ℎ − 1) − 𝐽(𝑘, ℎ + 1)|       (2) 

 

𝑇(𝑘,ℎ) = √∆𝑖
2 + ∆𝑗

2        (3) 

 

𝐾(𝑘,ℎ) = 𝑎𝑟𝑐𝑡𝑎𝑛 (
∆𝑖

∆𝑗
)        (4) 

 

2.2.   Feature selection 

Based on the availability of supervised information (i.e. labels), feature selection techniques can be 

grouped into two large categories: supervised and unsupervised context [33]. Additionally, different strategies 

of feature selection are proposed based on evaluation process such as filter, wrapper, and hybrid methods [34]. 

Hybrid approaches incorporate both filter and wrapper into a single structure, to give an effective solution for 

dimensionality reduction [35]. 

Liu et al. extend the unsupervised sparsity score to supervised context by utilizing the class label 

information [36, 37]. Let 𝑓𝑟𝑖
𝑐  denotes the 𝑟𝑡ℎfeature of 𝑖𝑡ℎ instance in class 𝑐, �̂�𝑖𝑗

𝑐  is the element of sparse 

similarity matrix 𝑆𝑐which is constructed within the class 𝑐, 𝒆𝑐 is a N- dimensional vector with 𝒆𝑐=1, if 𝐼𝑖  
belongs to the class 𝑐 and 0 otherwise. The two proposed supervised sparsity score of the 𝑟𝑡ℎ feature, denoted 

SparseScore𝑟 , which should be minimized, are defined as follows: 
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SparseScore1𝑟 = ∑ ∑ (𝑓𝑟𝑖
𝑝
− ∑ �̂�𝑖𝑗

𝑝
𝑓𝑟𝑗
𝑝𝑁𝑝

𝑗=1
)

𝑁𝑝
𝑖=1

𝑃
𝑝=1      (5) 

 

SparseScore2𝑟 =
∑ ∑ (𝑓𝑟𝑖

𝑐−∑ �̂�𝑖𝑗
𝑐 −𝑓𝑟𝑗

𝑐𝑁𝑐
𝑗=1 )

𝑁𝑐
𝑖=1

𝐶
𝑐=1

∑ ∑ (𝑓𝑟𝑖
𝑐−µ𝑟𝑐)

2𝑁𝑐
𝑖=1

𝐶
𝑐=1

      (6) 

 

After calculating the score for each feature, they are sorted in the ascending order of SparseScore𝑟  to select 

the relevant ones. In the classification experiments, Liu et al. have demonstrated that this score outperforms 

other methods in most cases, especially for multi-class problems [36]. 

 

 

3. EXPERIMENTAL RESULTS 

3.1.  Experimental setup 

Despite the vehicle logo recognition problem has been studied for many years, a few publicly available 

is available for the computer vision community. There are a few datasets is applied for logo detection such as 

vehicle logo dataset with 30 classes, namely VLD-30 [38]. Table 1 analyses the existing vehicle logo datasets. 

The first column indicates the dataset name and its reference. The second column show the availability of the pre-

defined training and testing set. This information is important for compare the classification results because other 

researchers can use this decomposition to train and test their models instead of using cross-validation methods. 

The next columns represent the number of logos, total images, and its resolution. The last column shows the 

availability of the corresponding dataset. 

The drawback of these datasets is the lack of pre-defined decomposition for training and testing set and 

mages are resized to the same resolution. To this end, we collected and organized a large-scale and comprehensive 

image database called VLR-40. This dataset contains images that were taken by different users, in unconstrained 

condition. The data was gathered by crawling from web pages and cropped semi-automatically. We keep the original 

resolution from cropped logo. It can be downloaded publicly at: https://data.mendeley.com/datasets/dr233ns3g6/3 

which contains total 4,000 color images of vehicle logo (see several example images from this dataset in 1).  

The sizes of each image are totally different. There is a total of 40 classes of logo in this original dataset. The data is 

split in half to be used as training and testing sets for classification task. Vehicle logo images are cropped from photo 

of car images semi-automatically. They also contain background and foreground and make this dataset is more 

challenging than the others. Figure 1 illustrates the two-vehicle logos are cropped from an original image. 
 
 

Table 1. Summary of the available logo databases in literature 
Dataset Name Pre-definedTrain/Test Number of logos Total images Resolution Publicly 

JiangSu [4] No 16 400 140 × 100 No 
Beijing University [6] Yes 8 4,000 1000 × 600 No 

VAP-RoadFig [3] No 30 200,000 varied No 

ITS-VLR [8] Yes 35 14,000 50 × 50 No 
CVLD [39] Yes 13 14,950 10 × 10   

150 × 150   

No 

Pretraining Strategy [2] No 10 11,500 70 × 70 Yes 
Xiamen University 

vehicle logo [40] 

Yes 10 11,500 70 × 70 Yes 

HFUT-VL [41] No   80 32,000 64 × 64 
64 × 96 

Yes 

Xi’an Jiaotong Liverpool 

University VL [42] 

No 15 19,780 64 × 64 

 

No 

Vehicle logo recognition (VLR-40) [43] Yes  40 4,000 varied Yes 

 
 

 
 

Figure 1. Example of vehicle logo images extracted from real-life scenario.  

The original image ison the left and two logos are cropped from this image 
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Figure 2 illustrates the cropped images from original image crawled from the web. We can observe that 

the two cropped images of the Ferrari logo are different visually by the resolution, rotation, and color. Under  

the current technology condition, these problems make this dataset is more challenging than others. Table 2 

presents example images of 40 different logo from VLR-40 dataset. 

 

 

 
 

Figure 2. Several categories of VLR-40 dataset 

 

 

3.2.  Results 

There are many color spaces are proposed in the literature for different applications. The HOG descriptor 

is applied to extract features from vehicle logo image of each color component. The final feature is obtained by 

fusing all features from three components. Three color spaces (RGB, HSV, YCbCr) are considered to encode 

image since these spaces are widely used for pattern recognition application. The training set is used to compute 

sparse score by (5) and (6). The value of these scores are then applied to rank features of training and testing set. 

Here, we use the cut-off ratio is 1% number of features to determine the optimum dimension. Table 2 presents 

the classification results on the VLR-40 dataset. The first column indicates the color space used to encode vehicle 

logo images. The second column shows the accuracy achieved of each space and its dimension when no selection 

method is applied. The number of features is 11,532×3 = 34,596 features. We see that the accuracy varies on 

different color space. The second and third column present the classification results by using sparse score 1 

and sparse score 2, respectively. The sparse score 1 clearly outperforms other methods by giving the best 

accuracy (75.25%) by using 77% (26,638 features) number of features. The sparse score 2 give the accuracy 

close to the results when no selection method is applied. However, it largely reduces number of features 

comparing with sparse score 1. For example, sparse score 2 only uses 20% number of features on HSV space 

while giving better performance. By observing this table, we see that feature selection method gives  

the accuracy as performing when no selection method, but it allows to reduce the dimension space.  

 

 

Table 2. Classification results on the VLR-40 dataset with two feature selection methods 

Color Space 
Without selection SparseScore1 SparseScore2 

Accuracy Dimension Accuracy Dimension Accuracy Dimension 

RGB 72.95 34,596 75.25 77% 72.95 70% 

HSV 66.30 34,596 67.50 83% 66.90 20% 
YCbCr 71.20 34,596 74.40 72% 71.30 86% 

 

 

Additionally, Figure 3 compares the performance of two sparse score 1 and 2 on three different color spaces. 

The combination of HSV color space and sparse core 1 give the worst performance compared with other 

methods. The RGB space and sparse score 2 give a good performance at early stage since it only need fewer 

than 10% number of features to reach an accuracy more than 70%. In contrast, the YCbCr and HSV spaces 

combined with sparse score 1 achieve a very low accuracy at the beginning when number of selected features 

is fewer than 55%. So, experimental results show that it should be interesting to find a suitable color space to 

encode vehicle logo images and an appropriate feature selection method to remove irrelevant features. 
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Figure 3. Classification performance of SparseScore1 and SparseScore2 on VLR-40 dataset by different 

color spaces 

 

 

4. CONCLUSION 

This paper presents a vehicle logo recognition based on HOG descriptor and feature selection via two 

sparse score. We also release a new benchmark vehicle logo image (VLR-40) dataset for research community. 

The experimental results show that the sparse score 1 gives the best accuracy on the RGB color space and 

largely reduce number of features. This study is now extended to compare the performance and find a suitable 

color space for encoding vehicle logo images. 
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