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 The MQ-series gas sensors are attractive candidates in the area of gas 

concentration sensing due to their high sensitivity and low cost. Even though 

the sensor circuit sensitivity and sensor power dissipation level both depend 

on load resistance, the process of the load resistance selection has not been 

well researched, hence the need for this study. The derivation of model 

equations for determining the sensor circuit sensitivity and sensor power 

dissipation is presented. The derived equations were used to investigate a 

typical scenario of MQ-6 gas sensor under the influence of liquified petroleum 

gas (LPG). The variation of sensitivity with load resistance and that of power 

dissipation with sensor resistance were parametrically investigated. The load 

resistance that yields maximum sensor circuit sensitivity with the maximum 

sensor power dissipation less than the set threshold is the candidate resistance 

for the sensor circuit.  The 20 kΩ load resistance recommended for MQ-6 in 

the datasheet was authenticated in this study, yielding the maximum possible 

sensor circuit sensitivity and tolerable sensor power dissipation of 0.195 

mV/ppm and 3.125 × 10−4 W, respectively. 
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1. INTRODUCTION 

The MQ-series gas sensors are attractive candidates in the area of gas concentration sensing due to 

their high sensitivity and low cost. The metal oxide (MOXs) semiconductor gas Sensors, comprising  

MQ-series and others, have wide applications in gas concentration sensing and detection due to their high 

sensitivity and low cost [1, 2]. The MOX semiconductor gas sensor consists of a micro AL2O3 ceramic tube, a 

sensitive layer of tin dioxide (SnO2), and Nickel-Chromium alloys which serve as a heater coil. This sensor 

has 6 pins, 4 out of which are for signal and electrodes, while the remaining 2 are for heating coils [3-5]. The 

tin dioxide (SnO2) semiconductor is the sensor gas-sensitive portion [3, 4, 6, 7] which has low conductivity in 

clean air [8]. The principle of operation of these sensors is based on the variation of their resistance when they 

come in contact with the gas to be sensed [7, 9, 10]. The magnitude of the sensor output signal depends on the 

concentration and nature of the gas [6, 8, 11] and the type of metal oxide used for the sensor sensing  

surface [2, 12, 13]. The sensor is made up of two elements, namely the heating and sensing elements. These 

elements are normally powered independently either from the same or separate voltage source. The heater 

voltage will allow it to generate the required heat for maintaining the sensor in the active state while the sensor 

voltage will allow the sensor to convert the sensed gas concentration to an appropriate voltage level across the 

load resistor connected in series with the sensing element [5, 9, 12, 14]. Because of the characteristic of the 

https://creativecommons.org/licenses/by-sa/4.0/
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sensing element a simple electrical equivalent circuit can be used to convert the sensed gas concentration to a 

corresponding signal usually voltage across the load resistor [5, 8, 9, 11]. 

To calibrate MOX semiconductor gas sensors the following sensor parameters must be known: sensor 

activation voltage (𝑉CC), sensor electrical equivalent circuit output voltage (𝑉R𝐿), the sensor resistance for 

referent gas concentration and environmental conditions (temperature and humidity) (𝑅𝑂) [15], the sensor 

resistance (𝑅S) and load resistance (𝑅L) [3]. The value of 𝑅O is not explicitly given in the sensor datasheet; 

therefore, it has to be determined experimentally [3]. In practice 𝑅O must be determined for every sensor to be 

used because it is practically impossible to have similar gas sensors with the same value of 𝑅O [16]. This is 

because it is also, practically impossible to secure the reproducibility and stability of this class of sensors as a 

result of the impossibility of keeping the consistency of the manufacturing environment, therefore, there is 

usually some variation in the sensor behaviour from one sensor to another and from one production batch to 

another [7, 10]. After the determination of  𝑅O value, the sensor resistance at different gas concentrations value 

for various gases and different environmental conditions (temperature and relative humidity (RH)) can be 

determined [2]. It should be noted that the sensor circuit sensitivity and the sensor power dissipation are both 

functions of the load resistance.  

Even though the sensor circuit sensitivity and sensor power dissipation level both depend on load 

resistance, the process of resistance selection has not fully investigated, and hence the need for this study.  The 

air quality using MQ-2 gas sensor was monitored as reported in [17], using the 20 kΩ load resistance as given 

in the sensor datasheet. The air quality monitoring system developed by [3] consisted of three sensors which 

include an MQ-7 gas sensor. However, a default manufacturer circuit with a load resistance of 1 KΩ was 

employed in the study, which is outside the range of value (5-47 kΩ) recommended in the datasheet with no 

justification. MQ-2 gas sensor was used by [18] for air quality monitoring with a load resistance value of 5 KΩ 

which is subjected to variation depending on the gas concentration to give room for sensitivity adjustment [19]. 

Four MOX sensors, consisting of MQ-2, MQ-3, MQ-6, MQ-135, were used in [4] for the development of a 

real-time olfaction monitoring system with a 10 kΩ load resistance for each of the sensors without considering 

their characteristics. An air pollution monitoring system using a single MQ-2 gas sensor for sensing both CO 

and smoke was developed in [20], using a 20 kΩ load resistance recommended in the sensor datasheet. The 

clean air sensor resistance parameter for MQ-5 gas sensor was computed in [1], by placing the sensor in fresh 

air while measuring the sensor output voltage with the 20 kΩ load resistance. However, the selection of load 

resistance was not justified.  MQ-2 and MQ-7 were used for sensing flammable gases and carbon monoxide 

respectively in a death-defying gas intelligent sensor system [5]. The load resistance used for both MQ-2 and 

MQ-7 sensors was 1 kΩ which is outside the range (5-47 kΩ) recommended in the sensor datasheet. 

In different microcontroller-based LPG leakage concentration monitoring and control systems 

proposed by [21-28], the leakage gas concentration was sensed in these systems using MQ-4 [28],  

MQ-6 [22, 23, 26, 27], MQ-5 [24] and MQ-2 [21, 25] gas sensors. The selection of the load resistance in all 

these systems sensor circuits was not considered. It was pointed out in [12, 29] that the value of the load resistor 

should be selected in such a way as to optimize the alarm threshold value and keep the sensor power dissipation 

below the maximum allowable value. For some sensors, the manufacturer provides data on the value of load 

resistance to be used so that the resolution would be sufficient around the alarm point. It was pointed out  

in [21] that the load resistance should be wisely selected to improve sensor performance because a lower value 

will result in less sensitivity while a higher value will give less accuracy. 

In most of the reviewed works, there is no concrete justification for the selection of the load resistance 

for the MQ-series gas sensor circuit aside from the claim that the selected value is as given in the sensor 

datasheet. Therefore, considering the dependence of the sensor circuit sensitivity and sensor power dissipation 

on the load resistance this study was carried out to investigate the dependence of these parameters on the load 

resistance and justify the selection of the resistance value. Using the sensor electrical equivalent circuit and a 

hypothetical sensitivity curve, the sensor model equations were developed. From the developed model 

equations, the equations for the determination of the sensor circuit sensitivity and sensor power loss were 

derived. The derived equations were used for a particular case of MQ-6 gas sensor under the influence of LPG 

to plot the graphs of sensor circuit output sensitivity versus load resistance and sensor power dissipation versus 

sensor resistance from which the trend of variation of sensitivity and sensor power dissipation with the load 

and the sensor resistance was respectively studied. The appropriate value of load resistance for maximum 

sensitivity and maximum power loss was determined. The load resistance that yielded maximum sensor circuit 

sensitivity with the maximum sensor power dissipation less than the set threshold is the candidate resistance 

for the sensor circuit. The value of the load resistance (20 kΩ.) recommended in MQ-6 datasheet was 

analytically authenticated in this study.  
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2. MODELLING OF MQ-SERIES GAS SENSOR CIRCUIT DYNAMICS 

The electrical equivalent circuit diagram for MQ-series gas sensors is as shown in Figure 1. 𝑉CC , 𝑉RL, 

𝑅Land 𝑅S are as earlier defined and 𝑅H is the heater resistance. From Figure 1, the current, I flowing through 

𝑅𝑆 and 𝑅𝐿 is given by;  

 

𝐼 =  
𝑉𝐶𝐶

(𝑅𝑆+ 𝑅𝐿)
               (1) 

 

The output voltage 𝑉𝑅𝐿  across the load resistor, 𝑅𝐿 ,  is given by;  

 

𝑉𝑅𝐿 =  
𝑅𝐿𝑉𝐶𝐶

(𝑅𝑆+ 𝑅𝐿)
           (2) 

 

From (2) the resistance 𝑅𝑆 is; 

 

𝑅𝑆 = (
𝑉𝐶𝐶

𝑉𝑅𝐿
− 1) 𝑅𝐿        (3) 

 

Also, the relationship between the sensor resistance and the gas concentration under a specified environmental 

condition (temperature and RH) can be obtained from the sensor sensitivity curve present in each of the MQ-

series sensor’s datasheet. A hypothetical plot of the sensor resistance ratio, 
𝑅𝑆

𝑅𝑂
 versus the corresponding gas 

concentration in parts per million (ppm) on the logarithmic scale is shown in Figure 2. 
 

 

  
 

Figure 1. MQ-series gas sensor electrical equivalent 

circuit [30, 31] 

 

Figure 2. Hypothetical MQ-series sensor sensitivity 

characteristic curve 
 

 

The sensor resistance ratio and gas concentration were related using the equation of a straight-line 

graph, Figure 2, obtained as follows: 
 

log10(𝑦) = 𝑚 log10 (𝑥) + log10(𝑐)      (4) 
 

where 𝑦 =
𝑅𝑆

𝑅𝑂
  dimensionless 

m =slope of the line 

x = gas concentration in ppm 

c = 10^(𝑞) 

where q is the intercept of the line where it cuts the y-axis. 
 

𝑚 =  
log10 (𝑦2)−log10 (𝑦1)

log10 (𝑥2)−log10 (𝑥1)
         (5) 

 

where (𝑥1, 𝑦1) and (𝑥2, 𝑦2)  are the coordinates of any two different points on the straight line of Figure 2. 

From (4) 
 

𝑐 = 10^(log10(𝑦) − 𝑚log10(𝑥))         (6) 

 

From (4) the sensor resistance can be expressed in terms of the parameters obtained from the sensitivity curve 

of Figure 2 as shown in (7). 
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𝑅𝑠 =  10(𝑚 log10(𝑥)+log10(𝑐)+log10 (𝑅𝑜))       (7) 
 

Therefore, substituting (7) into (2) gives; 
 

𝑉𝑅𝐿 =  
𝑅𝐿𝑉CC

(10(𝑚 log10(𝑥)+log10(𝑐)+log10 (𝑅𝑜))+ 𝑅𝐿)
        (8) 

 
 

3. LOAD RESISTANCE FOR MAXIMUM SENSITIVITY AND SENSOR POWER DISSIPATION 

It can be seen from (2) that the output voltage from the sensor circuit that is 𝑉𝑅𝐿 is a function of 𝑉CC, 

𝑅𝑆 and 𝑅𝐿, but  𝑉CC is always constant, therefore, 𝑉𝑅𝐿 varies only with the value of 𝑅𝑆 and 𝑅𝐿. Also, from (7) 

𝑅𝑆 is a function of 𝑥, 𝑐 and 𝑅𝑂 but 𝑐 is constant, 𝑥 has a range for a given gas and 𝑅𝑂 also has a range for a 

given class of MQ-series gas sensors. But it should be noted that 𝑅𝑂 has a unique value for each member in the 

class which is normally determined using (3) by empirically measure the value of 𝑉𝑅𝐿 at a specified value of 𝑥 

and environmental conditions. Based on this, it can be inferred that 𝑉𝑅𝐿 is a function of 𝑥, 𝑅𝑂 and 𝑅𝐿. From the 

MQ-series gas sensor datasheet, the range of 𝑅𝑂 and 𝑅𝐿 for a particular series of sensors is always specified.  

The requirements for the selection of 𝑅𝐿 are high output voltage span which will lead to high sensor 

circuit sensitivity and moderate sensor power dissipation [12]. It should be noted that out of the three 

parameters on which the value of sensor circuit output voltage (𝑉𝑅𝐿) depends, namely 𝑥, 𝑅𝑂 and 𝑅𝐿, it is only 

𝑅𝐿 that can be easily adjusted by the circuit designer to meet the voltage span and power dissipation 

requirements. This is because 𝑥, and  𝑅𝑂 are strictly dependent on the inherent characteristics of the gas and 

sensor material respectively. The sensor output voltage range was determined as follows, from (2) the minimum 

and maximum output voltage can be expressed as shown in (9-12). 
 

𝑉𝑅𝐿𝑚𝑖𝑛 =  
𝑅𝐿𝑉𝐶𝐶

(𝑅𝑆𝑚𝑎𝑠+ 𝑅𝐿)
          (9) 

 

𝑅𝑆𝑚𝑎𝑥 is the maximum value of sensor resistance and using (7) is as shown in (10). 

 

𝑅𝑆𝑚𝑎𝑥 =  10(𝑚 log10(𝑥𝑚𝑖𝑛)+log10(𝑐)+log10(𝑅𝑜))       (10) 

 

where 𝑥𝑚𝑖𝑛 is the minimum value of gas concentration in ppm. 

 

𝑉𝑅𝐿𝑚𝑎𝑥 =  
𝑅𝐿𝑉CC

(𝑅𝑆𝑚𝑖𝑛+ 𝑅𝐿)
          (11) 

 

𝑅𝑆𝑚𝑖𝑛 is the minimum value of sensor resistance and using (7) is as shown in (12) 

 

𝑅𝑆𝑚𝑖𝑛 =  10(𝑚 log10(𝑥𝑚𝑎𝑥)+log10(𝑐)+log10(𝑅𝑜))       (12) 

 

where 𝑥𝑚𝑎𝑥 is the maximum value of gas concentration in ppm. The voltage span was obtained from (9) and 

(11) and is as expressed in (13) 

 

𝑉𝑅𝐿𝑠𝑝𝑎𝑛 =
(𝑅𝑆𝑚𝑎𝑥−𝑅𝑆𝑚𝑖𝑛)𝑅𝐿𝑉CC

(𝑅𝑆𝑚𝑖𝑛+𝑅𝐿)(𝑅𝑆𝑚𝑎𝑥+𝑅𝐿)
       (13) 

 

The sensitivity of the sensor circuit is the ratio of the magnitude of its output voltage span to the corresponding 

change in the magnitude of the gas concentration and is mathematically expressed in (14). 

 

𝑆 =
𝑉𝑅𝐿𝑠𝑝𝑎𝑛

∆𝑥
          (14) 

 

∆𝑥 = 𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛  in ppm 

The value of 𝑅𝐿 that gives the maximum sensitivity for a particular sensor with a given value of 𝑅𝑂 

can be obtained by plotting 𝑆 against 𝑅𝐿 and determine the value of 𝑅𝐿 corresponding to the maximum point 

of the resulting curve. At maximum sensitivity  𝑅𝐿 = √𝑅𝑆𝑚𝑖𝑛𝑅𝑆𝑚𝑎𝑥   [32], therefore, the formula for the power 

dissipated by the sensor at maximum sensitivity was obtained by multiply the square of the current through the 

sensor obtained in (1) with the sensor resistance and is as expressed in (15). 

 

𝑃𝑠 =
𝑉𝐶𝐶

2𝑅𝑆

(𝑅𝑆+√𝑅𝑆𝑚𝑖𝑛𝑅𝑆𝑚𝑎𝑥)
2         (15) 
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Therefore, for a determined value of 𝑅𝐿 and given value of 𝑅𝑂, graph of 𝑃𝑠 against 𝑅𝑆 can be plotted to enable 

one study the trend of the variation of power dissipated by the sensor with 𝑅𝑆 and also, determine the maximum 

value of the sensor dissipated power at maximum sensitivity. It should be noted that this maximum value must 

not be greater than the set threshold value given in the sensor manufacturer datasheet [29]. 
 

 

4. MQ-6 GAS SENSOR CASE STUDY 

The MQ-6 gas sensor was selected at random out of many available MQ-series gas sensors. This type 

of gas sensor is capable of sensing seven gases as listed on the sensitivity curve of Figure 3. Out of these gases, 

the sensor has a high sensitivity for both LPG and Methane but for this study, LPG was considered. The 

appropriate value of 𝑅𝐿 was determined by first determined the numerical values of the slope 𝑚, intercept 𝑐, 

𝑥𝑚𝑖𝑛 and 𝑥𝑚𝑎𝑥  and substitute them into the appropriate equation as follows:  
 

 

 
 

Figure 3. Sensitivity characteristics graph for MQ-6 gas sensor [30, 31] 
 

 

The slope 𝑚 was determined by considered two coordinates (200, 2) and (10000, 0.4) on the LPG gas 

curve on the sensitivity graph of Figure 3. Substituting these coordinates in (5) gives 𝑚 =  −0.4114. The 

parameter 𝑐 which is embedded in the intercept of the LPG line with the 
𝑅𝑆

𝑅𝑂
 -axis was determined by selecting 

the coordinate (1000, 1) on the LPG line on the sensitivity curve, substituting this coordinate value and the 

value of m in (6) gives  𝑐 = 17.1484. The value of 𝑥𝑚𝑖𝑛 and 𝑥𝑚𝑎𝑥 for LPG is 200 ppm and 10000 ppm 

respectively. The relevant parameter values were substituted into (10), (12) (13) and (14) with the value of 𝑉𝐶𝐶  

equal to 5V. After the parameter substitution, (14) was used to plot the graph of 𝑆 versus 𝑅𝐿 for value of 𝑅𝑂 

increasing from 10 kΩ to 60 kΩ in step of 5 kΩ and the plot yielded the graph of Figure 4. Also, using (15), 

the graph of the sensor dissipated power versus the sensor resistance was plotted for the obtained value of 𝑅𝐿 

for the maximum sensitivity and a given value of 𝑅𝑂. The graph was plotted for different values of 𝑅𝑂 varying 

from 10-60 kΩ in step of 5 kΩ and is as shown in Figure 5. 
 
 

  
 

Figure 4. Plots of sensor circuit sensitivity versus 

load resistance for varying values of 𝑅𝑂 

 

Figure 5. Plots of sensor power dissipation versus 

sensor resistance for varying values of 𝑅𝑂 
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To test the applicability of this study, the recommendation of 𝑅𝐿=20 kΩ for the MQ-6 sensor in the 

datasheet [31] was authenticated. The equation that relates 𝑅𝑂 and 𝑅𝐿 is given in (16). 

 

𝑅𝑂 = 10((log10(𝑅𝐿
2)−𝑚(log10(𝑥𝑚𝑖𝑛)+log 10(𝑥𝑚𝑎𝑥))−2 log 10(𝑐))/2)     (16) 

 

Substituting 𝑅𝐿=20 kΩ and the value of other parameters into (16) gives the value of 𝑅𝑂 to be 23.065 𝑘Ω. The 

value of 𝑅𝑂 obtained can be confirmed as follows: From the LPG sensitivity curve, for 𝑅𝑆 to be equal to 𝑅𝑂 

the gas concentration must be 1000 ppm. Substitute 𝑚 = −0.4114, 𝑐 = 17.15,   𝑅𝑂=23.065  kΩ and  

𝑥 = 1000 ppm into (7) gives Rs=23.065 kΩ. This implies that for this sensor 𝑅𝑂=23.065 kΩ.  This shows 

that the value of 𝑅𝑂 for the sensor used in the datasheet is 23.065 𝑘Ω and for the maximum sensitivity to be 

obtained 𝑅𝐿 must be equal to 20 kΩ which is validated as seen in Figure 6. The plot of the sensor dissipated 

power against 𝑅𝑆 for 𝑅𝑂=23.065 kΩ and 𝑅𝐿=20 kΩ is as shown in Figure 7. From Figure 7, the maximum 

power dissipated and the value of 𝑅𝑆 for maximum power dissipation can be obtained.  

 

 
 

Figure 6. The plot of MQ-6 sensor circuit sensitivity versus load resistance for 𝑅𝑂=23.065 kΩ 

 

 

 
 

Figure 7. The plot of MQ-6 sensor power dissipation against sensor resistance for 𝑅𝑂=23.065 kΩ 

 

 

5. RESULTS AND DISCUSSION 

The data presented in Table 1 were obtained from Figure 4. As can be seen from the figure, the 

maximum obtainable sensor circuit sensitivity remains fairly constant for different values of  𝑅𝑂 from  

10-60 kΩ, but the maximum value occurred at different values of 𝑅𝐿 for each of the 𝑅𝑂. The value of 𝑅𝐿 

increases when 𝑅𝑂 falls between 10 kΩ and 50 kΩ but remain constant when 𝑅𝑂 is between the value of 55 

kΩ and 60 kΩ. From this analysis, it is obvious that the obtained value of sensor circuit sensitivity is a function 

of both the 𝑅𝑂 and 𝑅𝐿 but it should be noted that 𝑅𝑂 is solely depend on the sensor characteristics it is only 𝑅𝐿 

that can be adjusted by the circuit designer to achieve the required sensitivity.  



TELKOMNIKA Telecommun Comput El Control   

 

Analytical determination of load resistance value for MQ-series gas sensors: MQ-6 as … (Ajiboye A. T.) 

581 

The data of Table 2 were extracted from Figure 5. It is very clear from the table that the sensor power 

dissipation decreases as the value of 𝑅𝑂 and 𝑅𝑆 increases. The highest obtained sensor power dissipation was 

7.198 × 10−4 W which is far less than the maximum limit of 15 × 10−3 W [29]. As can be seen from  

Tables 2, the values of 𝑅𝐿 and 𝑅𝑆 are approximately equal, which implies that the law of maximum power 

dissipation is obeyed. 

It can be deduced from Tables 1 and 2 that the behaviour of the MQ-6 gas sensor is consistent in terms 

of maximum sensor circuit sensitivity and sensor power dissipation when 𝑅𝑂 is between 10-60 kΩ. The 

manufacturer of this category of sensor should work toward achieving a high value of 𝑅𝑂 because sensor power 

dissipation decreases with an increase in 𝑅𝑂 without affecting the sensor circuit sensitivity. The applicability 

of this study is confirmed as shown in Figures 6 and 7, where 𝑅𝑂=23.065 kΩ; the maximum sensor’s circuit 

sensitivity and power dissipation are approximately 0.195 mV/ppm and 3.125 × 10−4 W (far less than the 

maximum limit of 15 × 10−3 W [29]), respectively for 𝑅𝐿=20 kΩ. 

 

 

Table 1. Maximum sensor circuit sensitivity for a 

given 𝑅𝑂 and the corresponding value of 𝑅𝐿 
𝑆(mV/ppm) 𝑅𝑂 (kΩ) 𝑅𝐿 (kΩ) 

0.194 10,000 10,000 
0.195 15,000 13,000 
0.195 20,000 17,000 
0.195 25,000 22,000 
0.195 30,000 26,000 
0.195 35,000 30,000 
0.195 40,000 35,000 
0.195 45,000 38,000 
0.195 50,000 43,000 
0.195 55,000 47,000 
0.195 60,000 47,000 

 

Table 2. Maximum sensor power dissipation for a 

given 𝑅𝑂 and the corresponding value of 𝑅𝐿 
𝑃𝑆𝑚𝑎𝑥 × 10−4 (W) 𝑅𝑂 (kΩ) 𝑅𝑆 (kΩ) 

7,198 10,000 9,340 
4,799 15,000 14,000 

3,599 20,000 18,680 

2,879 25,000 23,350 
2,399 30,000 28,030 

2,057 35,000 32,700 

1,799 40,000 37,370 
1,600 45,000 42,040 

1,440 50,000 46,710 

1,309 55,000 51,380 
1,200 60,000 56,050 

 

 

 

6. CONCLUSION  

The sensor circuit dynamics was modelled and the developed model equations were used for 

determining, for a given 𝑅𝑂: (i) sensor circuit sensitivity as a function of load resistance and (ii) sensor power 

dissipation as a function of sensor resistance. The highest sensor power dissipation obtained when Ro = 10 kΩ 

was 7.198 × 10−4 W (<< the maximum limit of 15 × 10−3 W). It can be deduced from the study that the  

MQ-6 gas sensor has consistent behaviour in terms of maximum sensor circuit sensitivity and sensor power 

dissipation when 10 kΩ<𝑅𝑂<60 kΩ. The manufacturer of this category of sensor should increase the value of 

𝑅𝑂 as the level of sensor power dissipation is inversely related to the former. Finally, the 20 kΩ load resistance 

recommended for MQ-6 in the datasheet was also validated in this study because it gives maximum sensor 

circuit sensitivity and tolerable sensor power dissipation.  
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