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 In the field of health and medicine, there is a very important term known as 

clinical trials. Clinical trials are a type of activity that studies how the safest 

way to treat patients is. These clinical trials are usually written in unstructured 

free text which requires translation from a computer. The aim of this paper is 

to classify the texts of cancer clinical trial documents consisting of 

unstructured free texts taken from cancer clinical trial protocols. The proposed 

algorithm is conditional random Fields and bigram features. A new 

classification model from the cancer clinical trial document text is proposed to 

compete with other methods in terms of precision, recall, and f-1 score. The 

results of this study are better than the previous results, namely 88.07 

precision, 88.05 recall and f-1 score 88.06. 
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1. INTRODUCTION 

Text classification is defined as labeling natural language text documents with classes or categories 

of predetermined sets [1, 2]. Text classification is an important component in many NLP applications, such as 

sentiment analysis [3], relationship extraction [4] and spam detection [5, 6]. Text classification has also 

attracted the attention of researchers to continue to develop innovations and testing, including those sourced 

from cancer clinical texts commonly referred to as cancer clinical trials. Clinical trials are research that 

implicate people. Through clinical trials, the medical party detect new ways to enhance treatments and the 

quality of life for people with illness [7]. 

Classification of clinical trials text has been developed through several approaches such as statistical 

approaches [8]; eligibility screening approach [9]; machine learning approach [10]; deep neural  

network [11, 12] clustering [13], convolutional neural network [14] and approaches to fine grained document 

clustering [12], It appears that the use of deep learning methods in the modeling of clinical trial classification 

is still limited. Until now, the classification of clinical trial texts is still being developed. The use of deep 

learning methods has become a great hope in solving clinical trial problems, especially modeling and 

performance and computational improvement [14]. However, due to the high dimensions and sparse text data, 

and the complex semantics of natural languages, text classification presents its own challenges [15]. 

https://creativecommons.org/licenses/by-sa/4.0/
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Currently, deep learning technology [16] has achieved extraordinary results in many areas, such as 

computer vision [17] speech recognition, [18] and text classification [19]. Vincent menger [20] states that in 

some cases approaches with deep learning techniques applied to the classification of clinical texts can produce 

conclusions that match expectations, but will be different if tested on other clinical datasets and with different 

domains and different sizes. One of the studies on clinical trials that attracts attention is research from [21] 

(Bustos and Pertusa 2018). In this study, there is an explanation of predictions of patients with cancer, whether 

the patient is eligible or not worthy of being called a cancer sufferer based on medical records from doctors. 

The method used in this research is K-Nearest neighbor (KNN), support vector machine (SVM), 

convolutional neural network (CNN) and FastText. In this study, the results displayed state that the KNN 

method is better than complex models such as SVM, CNN and FastText. However, the time spent by KNN in 

assessing the performance of this dataset is still long, and its performance is still very slow, this means that this 

method is only effective but not efficient. 

One of deep learning method that is able to increase the computational value of text classification is 

conditional random fields [22, 23]. A conditional random field (CRF) is a standard model for predicting the 

most likely sequence of labels that corresponds to a sequence of inputs. The purpose of this study is to improve 

the text classification of cancer clinical trials using the conditional random fields method. Conditional random 

fields (CRF) is a probabilistic model to overcome segmentation and labeling of sequence data. CRF is used to 

combine features to get a model that will be used to assess the level of importance of sentences [24]. One of 

the applications of CRF is text classification [25, 26]. 

Several studies related to the above theme such as the cancer classification [27, 28] and clinical text 

classification [29, 30]. The other research that discusses the clinical text classification such as Zhang and 

Fushman [10], which discusses the development of methods for the automatic classification to facilitate the 

matching of ClinicalTrials.gov dataset patient trials for specific populations such as people living with HIV or 

woman pregnant. Yao et al. [31] produced a clinical text classification on obesity using the rule base feature 

and CNN methods. Chuan [14] proposes an active deep learning approach to automatically classify clinical 

trial. Jasmir et al. [12] use DNN and fine-grained document to improve classification text of clinical trial. 

The conditional random fields method has also been discussed in several themes such as extracting 

causal relations from emergency [32], named entity recognition [33], and biomedical text [24]. Moharasan and 

Ho [34] which conduct research on clinis texts with semi-supervised conditional random fields, they proposed 

and evaluated a two-stage semi-supervised novel for the temporal event extraction, in this work they prove that 

the influence of undocumented clinical texts helps to significantly increase the accuracy of temporal event 

extraction. But it still needs to be developed with other additional methods and features. Therefore, to answer 

of this problem, we built a new model using conditional random fields (CRF) and bigram feature as our 

methodology to improving computational value. 
 

 

2. MATERIAL AND METHOD 

CRF based model as shown in Figure 1. The dataset is parsed into tags and text, then preprocessing 

applications such as token creation and bigram feature creation and sentence detection. The next process is 

conducting training with the CRF and producing a CRF model. At the same time, the tagging process was also 

carried out. Then the trained model will label it according to its features 
 

2.1.  Dataset 

Data were taken from clinical reports. Data were extracted from clinical trial protocols about cancer 

originating from the National Institutes of Health: Bethesda, MD, USA, which can be downloaded from 

https://clinicaltrials.gov. This data comes from the fields of intervention, conditions, and feasibility written in 

unstructured free text language. Information in the eligibility criteria is a series of phrases and or sentences that 

are displayed in free format, such as paragraphs, bulleted lists, and enumeration lists. 
 

2.2.  Preprocessing 

Preprocessing has a very important role in the technique and application of text mining. This is the first 

step in the text mining process. In this paper, we discuss three main steps for preprocessing, namely, stopword, 

stemming and TF/IDF [35]. All eligibility criteria are converted into simple word sequences. Based on this data, 

the mapping was carried out into the components of the patient's complaints (main complaints, onset, other 

complaints, information, frequency of attacks, nature of attacks, duration, location, course of disease, previous 

treatment history, and the consequences of disturbances that arose). All words are lowercase letters. At this stage, 

information extraction is carried out, in which unnecessary words will be deleted so that the final result required 

in the classification is obtained. But we don't remove stop words because they are semantically relevant to clinical 

statements. Next, replace the numbers, arithmetic signs, comparison with the text. 
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Figure 1. Conceptual model 
 
 

2.3. Bigram 

In general bigram or digram is a sequence of two adjacent elements of a token string, which usually 

consists of several letters, syllables, or words. Bigram is part of n-gram. The frequency distribution of each 

bigram in a string (or data type) is usually used for processing simple statistical data [36, 37]. However, in this 

study, the meant bigram is the phrase most often found in the medical field. bigram which is often found then 

changed into text form. Bigram can take the form of an expression. Bigrams can also help solve the conditional 

probability of a token being previously completed, when the conditional probability is applied:  
 

𝑃(𝑊𝑛|𝑊𝑛−1) =
𝑃(𝑊𝑛−1,𝑊𝑛)

𝑃(𝑊𝑛−1)
 (1) 

          

That is, the probability P() of a token Wngiven the preceding token Wn-1  is equal to the probability of their 

bigram, or the co-occurrence of the two tokens P(Wn-1, Wn) , divided by the probability of the preceding token. 
 

2.4. Conditional random fields 

Conditional random fields (CRF) is a probabilistic model that is widely used in the segmentation and 

labeling process of a data sequence. CRF is a mixing method between hidden Markov model and maximum 

entropy Markov model [38] CRF maintains the advantages of supervised and unsupervised methods while 

avoiding the disadvantages of both methods. By acquiring the advantages of discriminative modeling that the 

generative model does not have and overcoming the shortcomings of the generative model such as the problem 

of dependence on high assumptions in the hidden Markov model (HMM) and the usual labeling problems that 

occur in the maximum entropy Markov model (MEMM). 

The set of features used to build the model using CRF based approach include Word and its Context 

Word, PoS of Word and its Context Words and Prefix and Suffix Information.The conditional random field 

(CRF) is added to the model in order to add the constraint relationship between the labels, to ensure that the 

predicted labels are valid and to find an optimal label sequence [39]. 

 

𝑠(𝑋, 𝑌) = ∑ (𝑇𝑦𝑖−1,𝑦𝑖 + 𝑇𝑖,𝑦𝑖)
𝑛
𝑖=1  (2) 

 

𝑝(𝑌|𝑋) =
𝑒𝑠(𝑋,𝑌)

∑ 𝑒𝑠(𝑋,𝑌) (3) 

 

𝑌 = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑠(𝑋, 𝑌) (4) 

 

 

3. RESULTS AND ANALYSIS 

3.1.  Precision recall and F-1 score 

Measures of classification performance can be defined based on the confusion matrix [40] as seen in 

Table 1. The confusion matrix provides information on the comparison of the classification results carried out 

by the system (model) with the actual classification results. The confusion matrix is in the form of a matrix 

table that describes the performance of the classification model on a series of test data whose true values are 

known. Precision is a representation of uniformity and repetition of measurements. Precision is the degree of 

excellence, on the performance of an operation or technique used to get results. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (5) 
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Recall is a measure of the success of a system in finding and retrieving information. Furthermore,  

F-Measure is a process of calculating evaluation by combining precision and recall calculations. recall and 

precission in a situation can have different weights. The measure that displays the reciprocity between recall 

and precission is F-Measure which is the average harmonic weight and realization and precision. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (6) 

 

F-Measure or F1-score is one of the evaluation calculations in information retrieval that combines 

recall and precission. The recall value and precission in a situation can have different weights. The size that 

displays reciprocity between recall and precission is F-Measure which is the mean harmonic weight and reall 

and precission. 

 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2+(𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)

𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 (7) 

 
 

Table 1. Measures of classification performance 
  Actual Class 

Predicted 

Class 

  Class=Yes Class=No 

Class=Yes TruePositive=TP False Positif=FP 

Class=No False Negatif=FN TrueNegative=TN 

 
 

3.2.  Model evaluation and validation 

In this study we conducted two experiments, each data from 1x105 to 5x105 data, the first experiments 

is CRF without bigram and second experiment is CRF with bigram. For small data, it seems that the result is 

not significant between using bigram and using without bigram, but the results will affect in the larger data. 

So, by adding the bigram feature combined with conditional random fields, it can increase the computational 

value, especially for larger data. 
 

3.2.1.  CRF without bigram 

The initial stage is evaluation using the conditional random field method only. Table 2 and  

Figure 2 are the CRF results without bigram. Data processing starts from small data which is 100,000 and 

multiples to the largest data which is 500,000 data. It can be seen that the evaluation value tends to increase 

with the addition of data. the more data that is processed, the greater the evaluation value will be. 

 

3.2.2.  CRF with bigram 

The next stage is evaluation using the CRF method with Bigram features as shown in Table 3 and 

Figure 3. Bigram feature greatly influences the evaluation results. It can be seen that the evaluation value tends 

to increase with the addition of data. (almost the same as CRF without Bigram), but this result is better than 

CRF without Bigram, especially on larger data (500,000 data). 
 

3.2.3.  Comparison table 

The Table 4 and Figure 4 is a comparison of Bustos and Pertusa [21] research (same dataset and 

different methods) and Moharasan and Ho [34] research (different dataset and same method). The results of 

this research indicate that precision 88.07, recall 88.05 and f-1 score 88.06. When compared with previous 

studies Bustos and Pertusa [21] using the same dataset and some deep learning methods like CNN and FastText, 

the results of this study with the CRF method are quite good and an increase in evaluation values. Then when 

compared to the Muharasan’s study [34] which uses CRF and different dataset, our reseach is better then 

previous research, especially by using bigram.  

The model built works better, this is because the context that is studied specifically from the clinical 

trial text document faces a lesser amount of ambiguity than the general context in the classification process. 

Another reason is that the CRF is a statistical-based model, the higher the ratio of causal sentences that appear, 

the more comprehensive the statistical information will be, and the higher the evaluation score will be. 
 

 

Table 2. Result of CRF without Bigram 

 100,000 200,000 300,000 400,000 500,000 

Precision (%) 70.1 75.1 78.02 80.03 84.01 

Recall (%) 72.7 74.7 77.35 79.67 84.3 

F-1 Score (%) 71.4 74.9 77.68 79.84 84.15 
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Table 3. Result of CRF with bigram 

 100,000 200,000 300,000 400,000 500,000 

Precision (%) 68.6 73.6 79.05 83.07 88.07 

Recall (%) 71.7 73.6 78.01 82.72 88.05 

F-1 Score (%) 70.12 73.60 78.53 82.89 88.06 

 

 

  
 

Figure 2. Graph of CRF without bigram 
 

Figure 3. Graph of CRF with bigram 
 

 

Table 4. Result of comparison with Aurelia Bustos and Moharasan 
Event Precision (%) Recall (%) F-1 (%) 

FastText[21] 88.00 86.00 87.00 

CNN [21] 88.00 88.00 88.00 

SVM [21] 79.00 79.00 79.00 

BaseLine[34] 79.17 81.12 80.13 

CRF + Lexical+Syntactic [34] 85.27 72.53 78.39 

CRF + Random Selection [34] 86.42 82.25 84.21 

Proposed Method CRF with Bigram  88.07 88.05 88.06 

 

 

 
 

Figure 4. Result of comparison with Bustos [21] and Moharasan [34] 
 
 

4. CONCLUSION 

CRFs are successfully being applied to clinical trials text classification. The evaluation results indicate 

that clinical trial text document, which are freely available, can be exploited by conditional random fields, thus 

opening the potential to explore more ambitious goals by making additional efforts needed to build datasets 

that corresponding. The results of this study are better than the previous results, namely 88.07 precision,  

88.05 recall and f-1 score 88.06. The next research is multilabel classification. The problem will be a multilabel 

classification task, where classes will be "effective" vs. "ineffective" and "learned" vs "not learned", and both 

can be true or false. This will allow us to classify four types of cases: effective and studied, potentially effective 

but not studied, ineffective and learned, and potentially ineffective and not learned. The main effort in this case 

lies in building a dataset, which includes the efficacy results obtained for each study. New models can be 

developed to produce potential cancer treatments that can be considered for certain patient cases based on the 

efficacy of complete clinical trials.  
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