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 High accuracy in breast cancer classification contributes to the effectiveness 

of early breast cancer detection. This study aimed to improve the multiview 

convolutional neural network (MVCNN) performance for classifying breast 

cancer based on the combined mediolateral (MLO) and craniocaudal (CC) 

views. The main contribution of this study is the development of a system, 

consisting of an effective image pre-processing method to create datasets 

using background removal techniques, and image enhancement. Also, a 

simplicity of preprocessing stage in the classifier machine, which does not 

require a feature extraction process. Furthermore, the performance of the 

classifier was improved by combining preprocessing dataset techniques and 

evaluating the best hyperparameter in MVCNN architecture. The digital 

dataset for screening mammography (DDSM) dataset was used for 

evaluation in this study. The best result from this proposed method achieved 

accuracy, precision, sensitivity, and specificity of 98.63%, 97.29%, 100%, 

and 97.29%. The evaluation results demonstrated the capability to improve 

classification performance. The method proposed in this work can be applied 

to the detection of breast cancer. 
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1. INTRODUCTION 

Breast cancer has emerged as one of the most pressing concerns in the medical field, characterized 

by high incidence and mortality rates. According to data from the World Health Organization (WHO) in 

2020, 7.8 million women were diagnosed with breast cancer, and the same year witnessed 684,996 deaths 

attributed to breast cancer [1], [2]. Recently, research focusing on breast cancer classification based on 

mammography images has been widely developed to create an optimal detection system for breast cancer. 

Anatomically, the breast comprises three main types of tissue: glandular tissue, fat, and connective tissue. 

When abnormal cells grow uncontrollably within the breast, this poses a significant threat, especially when 

these abnormal cells spread to glandular tissue [3]. Abnormal cells growing within the breast can be detected 

using breast imaging methods such as mammography [4], positron emission tomography (PET) [5], magnetic 

resonance imaging (MRI) [6], computed tomography (CT) [7], and ultrasonography [8]. Mammography is 

considered one of the most effective methods for detecting breast cancer tissue due to its higher sensitivity in 

identifying small changes or abnormalities in breast tissue compared to various other imaging methods [9]. 

However, unfortunately, breast cancer lumps often appear on mammography images with low contrast and 

appear blurry. Although breast cancer can be identified through radiologist interpretation of mammography 

https://creativecommons.org/licenses/by-sa/4.0/
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images, there is potential for errors due to human visual limitations and varying levels of subjectivity  

[10], [11]. Therefore, it is essential to develop an intelligent system capable of quickly and accurately 

detecting and diagnosing abnormalities [11]-[13]. 

According to Sickles et al. [14], radiology experts evaluate mammography results through five 

stages: identifying indications, analyzing breast tissue categories, evaluating significant findings, comparing 

with previous studies, and ultimately assigning a final assessment based on the breast imaging-reporting and 

data system (BI-RADS) category. During the mammography procedure, two different angles of the patient’s 

breast are captured to identify potential abnormalities. The craniocaudal (CC) projection captures an image 

from top to bottom of the breast, displaying the medial and lateral outer aspects of the breast. On the other 

hand, the mediolateral (MLO) projection is used to visualize the entire breast at an angle of approximately 40 

to 60 degrees from the side, showing lymph nodes and pectoral muscles [3]. Although breast cancer can be 

diagnosed by radiology experts, there is a possibility of inaccuracies in diagnosis due to human visual 

limitations and subjectivity. Hence, automatic breast cancer detection with the aid of computers is necessary 

to assist doctors and radiologists in the diagnostic process. Automatic analysis and diagnosis of breast cancer 

in mammography using computer-aided diagnosis (CAD) [15] not only reduces dependence on medical 

knowledge and doctor’s experience but also provides objective and accurate suggestions to doctors. With the 

rapid advancement of machine learning techniques, several machine learning algorithms have been applied to 

breast cancer diagnosis in mammography to enhance breast cancer diagnostic performance [16], [17].  

Previous studies have utilized deep learning to classify mammography images using the CC view. In 

this analysis, the CC view is used because it offers the visualization of most breast tissue without pectoral 

muscle representations in mammograms that can interfere with detection outcomes. The results of this 

research show that the proposed model can achieve a high classification performance, with an accuracy of 

92.84% for distinguishing between cancer and normal cases in mammograms from the CC view [18]. In 

contrast, the study by Firdi et al. [19] addressed issues in the MLO view by employing pectoral muscle 

removal techniques. The results showed that this method improved breast cancer detection accuracy in 

mammography images from the MLO view. However, both of these studies focused on a single view and did 

not address the simultaneous use of both mammography views. Akilan [20] found specific differences, 

indicating that images taken from different views of the same object can provide complementary information. 

In this context, mammography is a modality that captures images from two views: CC and MLO. By 

harnessing both views in the deep learning process, a richer set of visual features can be obtained. 

The idea is supported by a study in [13], which revealed that classifying mammography images using 

both CC and MLO views simultaneously can achieve an accuracy of 82.02%. This study employed a multiview 

approach that combined the CC and MLO views using a multiview convolutional neural network (MVCNN) in 

conjunction with a multi-dilated convolutional neural network (MDCNN). Similarly, Gu et al. [21] found that 

developing an auto-diagnosis model using multi-view mammography and transfer learning techniques can 

improve breast tumor diagnosis accuracy. This model achieved the best results in classifying tumors with an 

area under the curve AUC of 0.97 and 0.98 using two different datasets. However, in both of these studies, 

image preprocessing stages to improve characteristics, contrast, and noise in mammography images were not 

yet integrated. Beeravolu et al. [12] found specific differences, indicating that the use of preprocessing stages 

on all images before feeding them into machine learning is an effective way to enhance accuracy and reduce 

computational time during training, validation, and testing. These findings align with the conclusions of 

previous research by Tavakoli et al. [22], emphasizing the importance of image preprocessing to obtain 

accurate training data. Their study achieved 94.68% accuracy and a 95% AUC by eliminating unwanted 

areas, such as artifacts and noise in mammography images, followed by contrast enhancement. Similarly, 

Hikmah et al. [23] in their research, developed a preprocessing framework for breast cancer detection using 

multi-view mammography images. The study has room for improvement in the detection method used, where 

the image preprocessing framework was not yet incorporated into machine learning processes such as 

convolutional neural networks (CNNs). 

Although a previous study has successfully classified two mammography images from both CC and 

MLO views using machine learning algorithms, there is still room for a further comprehensive investigation 

to implement the use of an image preprocessing framework to improve characteristics, contrast, and noise in 

mammogram images before entering the machine learning algorithms. Furthermore, machine learning 

performance is highly dependent on various hyperparameters such as architecture, the number of filters, 

kernel size, and stride in convolution and pooling layers. Therefore, this study aims to classify 

mammography images by combining the use of an image preprocessing framework and enhancing 

classification performance by finding the best hyperparameters. Its specific aims include; i) evaluate the 

results of image preprocessing to create an effective dataset; ii) evaluate the impact of the number of filters, 

kernel size, and stride in convolution layers on accuracy; iii) evaluate the influence of kernel size and stride 

in pooling layers on accuracy; and iv) compare accuracy between the proposed method and the MVCNN 
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machine learning method without using image preprocessing stages. The contributions of the study include; 

i) the development of a machine learning architecture with the most effective hyperparameters based on a 

modified MVCNN for direct pattern recognition using preprocessed mammography images as input to the 

classifier and ii) the simplification of the preprocessing stage in the machine classifier, which does not 

require a feature extraction process. 

This paper is structured as follows: section 2 presents the materials and the proposed method in 

comparison to other standard approaches. Section 3 describes the results of this study. Section 4 presents the 

discussion, while conclusions are presented in section 5. 

 

  

2. METHOD  

The overall system design can be seen in Figure 1. This system comprises an input dataset, followed 

by a preprocessing stage to remove artifact labels and enhance image quality. Subsequently, the processed 

images will be used as input for machine learning classification. Finally, the MVCNN is employed to classify 

breast cancer. 

 

 

 
 

Figure 1. Diagram of system 

 

 

2.1.  Dataset 

The research leverages a rich source of data: the digital dataset for screening mammography 

(DDSM) [24], a secondary open-source resource. This dataset encompasses 255 subjects, each contributing 

multiple mammogram images for a total of 1020. Remarkably, the dataset maintains a balanced distribution 

between healthy and cancerous cases, with 510 images classified as “normal” and 510 classified as “cancer.” 

This balanced representation of both classes ensures robust training and evaluation of the cancer detection 

model. 

 

2.2.  Image preprocessing method 

Effective cancer detection relies on a well-prepared dataset, and this study employs a dedicated 

image preprocessing stage for optimization. The critical stage involves two primary steps: i) background 

Removal, systematically eliminating unwanted elements like labels or text annotations to prevent potential 

model misguidance and ii) image enhancement, applying techniques such as contrast adjustments, noise 

reduction, and sharpening for improved image quality. These enhancements enhance clarity and feature 

visibility, facilitating precise feature extraction and leading to more reliable cancer classification. 
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2.2.1. Background removal 

The first stage is background removal, which eliminates label artifacts in mammography images. 

This is done by determining the foreground and background of the image. To extract objects from the 

background, thresholding is applied to the binary image using Otsu’s thresholding method, as adapted from 

Firdi et al. [19]. Next, morphological transformations, are performed using erosion and dilation as 

transformation operations. The original image is then combined with the morphologically transformed image 

using a bitwise logic gate operator.  

 

2.2.2. Image enhancement 

The second stage is image enhancement using the contrast limited adaptive histogram equalization 

(CLAHE) method. A clip limit of 2.0 and a tile size grid of 16×16 is used. Subsequently, normalization is 

applied using contrast stretching to enhance the visibility of abnormalities in the mammography image. The 

upper and lower limits of the range are set to 20 and 210, respectively. After normalization, the image is 

processed to determine its orientation, as adapted from Firdi et al. [19]. The orientation of the image is 

determined by counting the number of black pixels in half of the width of the mammography image while 

flipping the image if it has more black pixels than half of the width. This ensures that both mammography 

images face the same direction (right). Finally, the image size is resized to 256×256 pixels. 

 

2.3.  Proposed MVCNN model 

The proposed architecture in this research is an adaptation of a previous study [13] with 

modifications made by the author. The architecture incorporates modifications in the number of convolution 

layers and pooling layers used. It also utilizes different variations of filters, kernel sizes, and strides. Figure 1 

illustrates the architecture employed in this research. The architecture takes two mammography images as 

input, the CC and MLO views. These two images are then processed through two convolution blocks, where 

each block represents a convolution block for the CC and MLO images, respectively. Each convolution block 

consists of three convolutional layers followed by a pooling layer. The convolutional layers employ different 

variations of filters with distinct kernel sizes and strides. The max pooling method is employed in this 

research, utilizing specific kernel sizes and strides. The ReLU activation function is applied to the output of 

each convolution operation in the convolutional layers. Subsequently, the outputs from both convolution 

blocks are fed into a flattening layer to transform the pooled results into a vector representation. These 

representations are then concatenated in a feature maps concatenation process. The concatenated feature 

maps are then passed through a linear layer to convert the combined features into detection outputs with 

dimensions corresponding to the number of classes to be detected. The output of the linear layer is further 

activated using the sigmoid activation function to generate a final output ranging between 0 and 1. 

 

2.4.  Experimental setting  

The utilized dataset has undergone image preprocessing stages, resulting in a collection of images 

sized at 256×256 pixels. The settings for training, validation, and testing are configured as follows: the 

learning rate is set to 10−4, the batch size is set to 8, the employed epochs are 150, and optimization employs 

the Adam algorithm. The proposed method is developed and tested using the Python programming language, 

utilizing Google Collaboratory as the editing and compiling platform, with an A100GPU hardware 

accelerator. The PyTorch framework is employed as the backend to implement the Python-based MVCNN 

architecture. This study conducts a comparison with other machine learning techniques, as previously 

undertaken in the research, such as in the case of MVMDCNN [13].  

 

2.5.  The performance: preprocessing images and MVCNN  

To assess the performance of both the image preprocessing stage and the multiview detection 

system, a performance evaluation needs to be conducted for each stage. The performance evaluation for the 

image preprocessing stage can be done by measuring the image quality through a comparison between the 

processed images and the original images. This can be achieved by using parameters such as mean squared 

error (MSE) and peak signal noise ratio (PSNR). 

 

𝑀𝑆𝐸 =  
1

𝑚𝑛
∑ ∑ (𝐺(𝑖, 𝑗) − 𝑃(𝑖, 𝑗))2𝑛−1

𝑗=0
𝑚−1
𝑖=0  (1) 

 

𝑃𝑁𝑆𝑅 =  10 𝑙𝑜𝑔10 (
(𝑀𝐴𝑋)

√𝑀𝑆𝐸
) (2) 
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To evaluate the performance of the proposed model, a confusion matrix. The confusion matrix 

provides indicators such as accuracy, precision, sensitivity, and specificity, which are calculated using (3)-(6), 

respectively. 

 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑁+𝐹𝑃
 (3) 

 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (4) 

 

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑓𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (5) 

 

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
 (6) 

 

The performance evaluation is crucial for assessing the performance of the trained detection model using the 

three different types of datasets.  

 

 

3. RESULTS AND DISCUSSION  

In this study, each image will follow a general system design. The process involves removing 

artifact labels, enhancing image quality, and ultimately classifying breast cancer in the processed images. The 

following section will discuss the results and delve into each stage. 

 

3.1.  Image preprocessing 

The process of transforming images into an effective dataset through image processing involves two 

main phases: background removal and image enhancement. Background removal utilizes the rolling ball 

algorithm and morphological transformation involving processes such as otsu thresholding, erosion, dilation, 

and subsequent merging to convert the original images into binary images. The rolling ball algorithm is 

employed to smooth the image surface and mitigate sharp intensity disparities within the image, using a 

spherical element. The radius of this sphere influences the conversion of the original image into a binary 

representation. This study explores the optimal radius value, achieved by comparing image preprocessing 

outcomes using MSE and PSNR metrics, as shown in Table 1. In this study, it was found that the choice of 

the radius value in the rolling ball algorithm affects the conversion of images into binary images. A radius 

that is too small may result in binary images with significant noise or irrelevant small details being 

considered as objects. Conversely, a radius that is too large may cause binary images to lose important details 

or blur object boundaries. Therefore, testing is necessary to identify the optimal radius value, and the 

comprehensive findings of this radius optimization exploration are provided in Table 1, with the most 

effective value determined as 10. Upon achieving image surface homogenization, the binary transformation 

is accomplished through Otsu Thresholding. This method computes the threshold value for each image, with 

unique values designated for individual images. For instance, in Figure 2, the image labeled as subject 

A_1573_1 features a threshold value of 73. Subsequently, a pixel value adjustment is executed, with pixel 

values below 73 set to 0, while those exceeding 73 are set to 1. Following the binary image attainment, the 

subsequent phase involves the elimination of labels that manifest as artifacts within the image, facilitated by 

morphological transformations encompassing erosion and dilation operations. This research employs a kernel 

size of 30×30 for the erosion operation (with a single iteration) and a kernel size of 90×90 for the dilation 

operation (conducted over 3 iterations). These parameter choices contribute to an enhanced success rate in 

background removal. The erosion operation’s purpose in this study is to separate adjacent objects, followed 

by the elimination of residual small objects stemming from the erosion procedure. Subsequently, a dilation 

operation enhances the object edges within the breast region. A final merging process amalgamates the original 

image with the binary image, yielding an artifact-free labeled image8. The outcomes of this second-stage image 

preprocessing are illustrated in Figure 2.  

Subsequent to background removal, the focus shifts to image enhancement, achieved through 

CLAHE and contrast stretching techniques, aimed at augmenting image contrast. This enhancement process 

is followed by image orientation adjustment to the right and resizing. Mammography images often exhibit 

modest contrast, posing challenges in distinguishing between cancerous tissues and overlapping normal 

tissues. CLAHE is employed to ameliorate low-contrast images. The determination of optimal parameter 

values involves exploring clip limits and tile size grids through a comparison of PSNR and MSE metrics, as 

shown in Table 2. The experimentation entails testing CLAHE with clip limit parameters of 2.0, 6.0, and 

12.0, along with tile size grid parameters of 8×8, 12×12, and 16×16. The outcomes of these experiments, 

leading to the identification of optimal tile size grid and clip limit values, are presented in Table 2. Within 
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this study, the most favorable results are achieved with a clip limit of 2.0 and a tile size grid of 16×16. 

Subsequently, the image, having undergone contrast enhancement via CLAHE, is normalized through 

contrast stretching to extend the intensity value range within the image. The testing of contrast stretching 

involves range parameters of 20-200, 20-208, and 20-210. The study determines the optimal range value 

within the 20-210 range, as shown in Table 3. After applying CLAHE and contrast stretching, image 

orientation is established by reflecting the image when black pixels exceed half the image width. The aligned 

image faces rightward. Finally, the image is resized to 256×256 pixels. The outcomes of this second-stage 

image preprocessing are illustrated in Figure 3. 

 

 

Table 1. Experimental results to find the most optimal ball radius value 
Ball radius Mean MSE Mean PSNR 

10 34.7883 32.8589 

15 42.7550 31.9527 

 

 

 

 
 

Figure 2. Result of the background removal stage 

 

  

Table 2. Optimization results of clip limit and tile size grid in CLAHE method for image B_3041_1.LEFT_MLO 
Clip limit Tile Size Grid MSE PSNR 

2.0 8×8 59.1349 30.4124 
12×12 56.6601 30.5981 

16×16 54.4589 30.7701 

6.0 8×8 71.4264 29.5922 
12×12 71.0187 29.6171 

16×16 70.7257 29.6350 

12.0 8×8 97.5797 28.2372 
12×12 96.9621 28.2648 

16×16 97.2975 28.2498 

 

 

Table 3. Optimization results of range in contrast stretching method for image B_3041_1.LEFT_MLO 
Range Mean MSE Mean PSNR 

20-200 64.8473 29.8799 

20-208 64.8819 30.0096 

20-210 64.3624 30.0445 

 

 

3.2.  Effect number of filters, kernel size, and stride in the convolutional layer on accuracy 

In the convolutional layer, the number of filters, kernel size, and stride influence the accuracy of 

machine learning training. In this study, three variations of the number of filters are employed: [16, 32, 64], 

[30, 60, 120], and [32, 64, 128]. Each filter variation is explored concurrently with kernel size and stride 

value. The tested kernel size variations are 3×3, 5×5, and 7×7, all with a stride of 1. The experimental results 

are presented in Table 4. After evaluating the effects of the number of filters, kernel size, and stride on 

accuracy, the results demonstrate that the [32, 64, 128] filter variation exhibits higher accuracy compared to 
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the other variations. It is evident that as the kernel size increases, the obtained accuracy also increases, and 

the gap between the training and validation loss values becomes narrower. This indicates a close 

correspondence between these two losses, signifying that the model effectively generalizes the validation 

data. This experiment underscores that larger kernel sizes significantly impact the model’s performance in 

generalizing validation data, leading to higher accuracy outcomes. 

 

 

 

 
 

Figure 3. Result of the image enhancement stage  

 

 

Table 4. Hyperparameter exploration results in the convolutional layer  
Stride Filters Kernel size Loss training Loss validation Loss testing Accuracy testing (%) 

1 [16, 32, 64] 3 × 3 0.3321 

0.3252 

0.3220 

0.4408 0.3761 91.78 

 5 × 5 0.4427 0.3700 93.15 

7 × 7 0.3866 0.3569 93.15 

[30, 60, 120] 3 × 3 0.3305 

0.3190 
0.3190 

0.4672 0.3711 94.52 

5 × 5 0.4289 0.3593 94.52 

7 × 7 0.4164 0.3559 94.52 

[32, 64, 128] 3 × 3 0.3390 

0.3190 

0.3162 

0.4264 0.3700 93.15 

5 × 5 0.4421 0.3667 94.52 

 𝟕 × 𝟕 0.4060 0.3569 95.89 

 

 

3.3.  Effect number of filters, and kernel size in the pooling layer on accuracy 

In this study, the search for the optimal kernel size and stride values in the pooling layer is 

conducted using the best parameters previously obtained from the exploration of variations in the number of 

filters, kernel size, and stride in the convolutional layer. The filter variation employed is [32, 64, 128] with a 

kernel size of 7×7 and stride of 1. Within the pooling layer, exploration is performed on several parameters, 

namely, kernel sizes of 2×2 and 3×3, along with stride parameters of 1, 2, and 3. The experimental results are 

presented in Table 5. It is evident that within the pooling layer, the kernel size shows no significant 

difference in accuracy between the use of 2×2 and 3×3 kernels. However, in terms of training, validation, and 

testing loss measurements, the employment of a 3×3 kernel yields the best outcomes. This is indicated by the 

alignment of both training and validation losses. As for the stride parameter in the pooling layer, larger stride 

values correspond to higher accuracy. From these results, it is inferred that a kernel size of 3×3 and a stride of 

3 are the most optimal values within the pooling layer. 
  

 

Table 5. Hyperparameter exploration result in the pooling layer  
Kernel size Stride Loss training Loss validation Loss testing Accuracy testing (%) 

2 × 2 1 0.7962 

0.3162 

0.3202 

0.7924 0.8049 49.32 

2 0.4060 0.3569 95.89 

3 0.3833 0.3407 97.26 

𝟑 × 𝟑 1 0.8133 

0.3190 

0.3223 

0.7924 0.8049 49.32 

2 0.3931 0.3585 93.15 

3 0.3625 0.3277 97.26 
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3.4.  Breast cancer classification 

The detection system used in this study is the MVCNN. MVCNN serves as a suitable machine-

learning approach for classification tasks. The evaluation of the detection system involves the assessment of 

hyperparameters within the convolutional and pooling layers. Based on the testing results of the detection 

system using the MVCNN architecture on the second dataset, the results shown in Table 6 demonstrate 

exceptional performance. The comparison graph of training and validation losses in Figure 4(a) indicates a 

rapid decline as epochs progress, with convergence approaching a stable point. The graph demonstrates a 

near-stabilized convergence, signifying that the model has reached an optimal state. Moreover, the proximity 

between training and validation losses suggests good generalization capability on validation data. Similarly, 

Figure 4(b) illustrates converging or near-stable accuracy improvement. Furthermore, the evaluation metrics 

outlined in Table 7 exhibit outstanding performance. The accuracy reaches 98.63%, reflecting a high success 

rate in classifying objects within the dataset. Precision attains 97.29%, indicating accurate positive 

prediction. Sensitivity reaches 100%, demonstrating the model’s ability to correctly identify all true positive 

objects. Specificity attains 97.29%, highlighting the model’s accurate classification of all true negative 

objects. As evident from Figure 4(c), out of the total 73 tested samples, 36 normal samples (true negative) 

and 36 abnormal samples (true positive) were correctly classified, with only 1 abnormal sample misclassified 

as normal (false negative). This showcases the model’s high accuracy in object classification. 

 

 

Table 6. Results using the best hyperparameter 
Loss training Loss validation Loss testing Acc (%) Duration (s) 

0.3163 0.3369 0.3245 98.63 45.29 

 

 

Table 7. Evaluation metrics during training  
Accuracy Precision Sensitivity Specificity 

0.9863 0.9729 1.0 0.9729 

  

 

   
(a) (b) (c) 

 

Figure 4. Comparing simulation results of: (a) loss graph during training, (b) accuracy graph during training, 

and (c) confusion matrix results for testing 

 

 

This study involves a comparison to assess the performance of the proposed method against the 

previous method that employs the same approach, namely a modified version of the MVMDCNN method [13], 

using the best-explored hyperparameters evaluated in this research. As shown in Table 8, it can be observed 

that the modified MVMDCNN method achieves an accuracy of 95.89% in classifying breast images into two 

categories: normal or cancerous. This method also exhibits a sensitivity of 97.29%, indicating its proficiency 

in accurately recognizing positive cancer cases among all actual positive cases. However, its specificity is 

94.44%, suggesting slight difficulty in correctly identifying negative cases. On the other hand, the proposed 

method demonstrates superior overall performance. With an accuracy of 98.63%, it can classify these images 

with greater precision. Furthermore, its sensitivity is 100%, showcasing the method’s ability to accurately 

identify all positive cases. Additionally, its specificity is also high at 97.29%, demonstrating the method’s 

capability to accurately identify negative cases. Both the previous and proposed methods exhibit the same 

level of precision at 97.29%, highlighting their equivalent abilities in providing accurate positive predictions. 
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Table 8. Classification performance comparison with other studies 

Method Dataset Number of classes Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) 

TVNN [25] DDSM 2 94.70 - - - 

VGG16+MVML-GL [22] DDSM 2 95 - - - 

ResNet50+CvAM [20] DDSM 2 86.2 - - - 

MVMDCNN [13] DDSM 2 82.2 - - - 

MVMDCNN Modified [13] DDSM 2 95.89 97.29 94.44 94.73 

Purposed method DDSM 2 98.63 100 97.29 97.29 

 

 

4. CONCLUSION 

This study aimed to improve performance using an image preprocessing framework, simplify the 

architecture, and determine the best hyperparameters based on the MVCNN algorithm in classifying breast 

cancer from CC and MLO views. The study establish that the accuracy of the proposed method outperformed 

other classifiers. In this work, preprocessing stages are applied to mammogram images, involving 

background removal and image contrast enhancement. The advantage of the proposed method is the 

simultaneous use of two mammography images from CC and MLO views, optimized through image 

preprocessing stages to create an effective input dataset, thus enhancing the system’s ability to classify breast 

cancer with a higher level of accuracy and reducing the need for manual intervention. Findings indicate that 

filter variations [32, 64, 128] with a 7×7 kernel size and a stride of 1 are sufficient in the convolution layers. 

In the pooling layers, a 3×3 kernel size with a stride of 3 yields the best results, as indicated by the alignment 

of loss in both training and validation. Classification using MVCNN based on mammogram images and the 

selection of the best hyperparameter variations successfully achieved accuracy, sensitivity, specificity, and 

precision of 95.31%, 95.31%, 98.8%, and 95.55%, respectively. Future studies should focus on developing a 

more comprehensive classification approach by utilizing deep learning techniques within the MVCNN 

architecture to further enhance performance. Also, the proposed method could be implemented in computer-

based detection systems for breast cancer diagnosis. 
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