Parallel random projection using R high performance computing for planted motif search

Lala Septem Riza, Tyas Farrah Dhiba, Wawan Setiawan, Topik Hidayat, Mahmoud Fahsi


Motif discovery in DNA sequences is one of the most important issues in bioinformatics. Thus, algorithms for dealing with the problem accurately and quickly have always been the goal of research in bioinformatics. Therefore, this study is intended to modify the random projection algorithm to be implemented on R high performance computing (i.e., the R package pbdMPI). Some steps are needed to achieve this objective, ie preprocessing data, splitting data according to number of batches, modifying and implementing random projection in the pbdMPI package, and then aggregating the results. To validate the proposed approach, some experiments have been conducted. Several benchmarking data were used in this study by sensitivity analysis on number of cores and batches. Experimental results show that computational cost can be reduced, which is that the computation cost of 6 cores is faster around 34 times compared with the standalone mode. Thus, the proposed approach can be used for motif discovery effectively and efficiently.


bioinformatics; high performance computing; motif discovery; planted motif search; R programming language;

Full Text:




  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120
Fax: +62 274 564604