Comparison of exponential smoothing and neural network method to forecast rice production in Indonesia

Gregorius Airlangga, Agatha Rachmat, Dodisutarma Lapihu


Rice is the most important food commodity in Indonesia. In order to achieve affordability, and the fulfillment of the national food consumption according to the Indonesia law no. 18 of 2012, Indonesia needs information to support the government's policy regarding the collection, processing, analyzing, storing, presenting and disseminating. One manifestation of the Information availability to support the government’s policy is forecasting. Exponential smoothing and neural network methods are commonly used to forecasting because it provides a satisfactory result. Our study are comparing the variants of exponential and backpropagation model as a neural network to forecast rice production. The evaluation is summarized by utilizing Mean Square Percentage Error (MAPE), Mean Square Error (MSE). The results show that neural network method is preferable than the statistics method since it has lower MSE and MAPE values than statistics method.


forecasting; neural network; rice production; statistics;

Full Text:




  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120
Fax: +62 274 564604