Joint control of a robotic arm using particle swarm optimization based H2/H∞ robust control on arduino

Petrus Sutyasadi, Martinus Bagus Wicaksono

Abstract


This paper proposes a small structure of robust controller to control robotic arm’s joints where exist some uncertainties and unmodelled dynamics. Robotic arm is widely used now in the era of Industry 4.0. Nevertheless, the cost for an industry to migrate from a conventional automatic machine to industrial robot still very high. This become a significant challenge to middle or small size industry. Development of a low cost industrial robotic arm can be one of good solutions for them. However, a low-cost manipulator can bring more uncertainties. There might be exist more unmodelled dynamic in a low-cost system. A good controller to overcome such uncertainties and unmodelled dynamics is robust controller. A low-cost robotic arm might use small or medium size embedded controller such as Arduino. Therefore, the control algorithm should be a small order of controller. The synthesized controller was tested using MATLAB and then implemented on the real hardware to control a robotic manipulator. Both the simulation and the experiment showed that the proposed controller performed satisfactory results. It can control the joint position to the desired position even in the presence of uncertainties such as unmodelled dynamics and variation of loads or manipulator poses.


Keywords


arduino; H2/H∞ robust control; robotic arm;

Full Text:

PDF


DOI: http://doi.org/10.12928/telkomnika.v18i2.14749

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120
Fax: +62 274 564604

View TELKOMNIKA Stats