Efficient combined fuzzy logic and LMS algorithm for smart antenna

Mohammed Hussein Miry, Ali Hussien Mary


The smart antennas are broadly used in wireless communication. The least mean square (LMS) algorithm is a procedure that is concerned in controlling the smart antenna pattern to accommodate specified requirements such as steering the beam toward the desired signal, in addition to placing the deep nulls in the direction of unwanted signals. The conventional LMS (C-LMS) has some drawbacks like slow convergence speed besides high steady state fluctuation error. To overcome these shortcomings, the present paper adopts an adaptive fuzzy control step size least mean square (FC-LMS) algorithm to adjust its step size. Computer simulation outcomes illustrate that the given model has fast convergence rate as well as low mean square error steady state.


fuzzy logic; LMS algorithm; smart antenna;

Full Text:


DOI: http://doi.org/10.12928/telkomnika.v21i5.24370


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120
Fax: +62 274 564604