Sclera boundary localization using circular hough transform and a modified run-data based algorithm

Tunde Taiwo Adeniyi, Oladele Tinuke Omolewa, Jide Kehinde Adeniyi


Security challenges over the years has led to the need for an improvement in the traditional security approaches. This led to the advent of biometrics. Recently, among the biometric approaches, sclera has been an area of imense study. This is due to its accuracy; however, segmentation of the sclera has been a limiting factor to the application of this biometric trait. Several approaches have been proposed in literature but there is still the need to improve the segmentation accuracy. This study proposes the use of circular hough transform and a modified run-data based algorithm. The study also presented a sclera recognition system using the compound local binary pattern for features extraction and Manhattan distance for classification. The system produced a segmentation accuracy of 99.9% for sclera blood vessels, periocular and iris (SBVPI) sclera database and 100% for manually captured sclera database. The system produced an accuracy of 99.98 for SBVPI sclera database and 99.99% for manually captured sclera database.


biometrics; circular hough transform; compound local binary pattern; modified run-data algorithm; sclera boundary localization;

Full Text:




  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120
Fax: +62 274 564604