Electroencephalography-based brain-computer interface using neural networks

Pham Van Huu Thien, Nguyen Ngoc Son


This study aimed to develop a brain-computer interface that can control an electric wheelchair using electroencephalography (EEG) signals. First, we used the Mind Wave Mobile 2 device to capture raw EEG signals from the surface of the scalp. The signals were transformed into the frequency domain using fast Fourier transform (FFT) and filtered to monitor changes in attention and relaxation. Next, we performed time and frequency domain analyses to identify features for five eye gestures: opened, closed, blink per second, double blink, and lookup. The base state was the opened-eyes gesture, and we compared the features of the remaining four action gestures to the base state to identify potential gestures. We then built a multilayer neural network to classify these features into five signals that control the wheelchair’s movement. Finally, we designed an experimental wheelchair system to test the effectiveness of the proposed approach. The results demonstrate that the EEG classification was highly accurate and computationally efficient. Moreover, the average performance of the brain-controlled wheelchair system was over 75% across different individuals, which suggests the feasibility of this approach.


brain-controller wheelchair; electroencephalography; fast fourier transform; neural networks;

Full Text:


DOI: http://doi.org/10.12928/telkomnika.v21i5.24839


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120
Fax: +62 274 564604