An implementation of novel genetic based clustering algorithm for color image segmentation

Varshali Jaiswal, Varsha Sharma, Sunita Varma

Abstract


The color image segmentation is one of most crucial application in image processing. It can apply to medical image segmentation for a brain tumor and skin cancer detection or color object detection on CCTV traffic video image segmentation and also for face recognition, fingerprint recognition etc. The color image segmentation has faced the problem of multidimensionality. The color image is considered in five-dimensional problems, three dimensions in color (RGB) and two dimensions in geometry (luminosity layer and chromaticity layer). In this paper the, L*a*b color space conversion has been used to reduce the one dimensional and geometrically it converts in the array hence the further one dimension has been reduced. The a*b space is clustered using genetic algorithm process, which minimizes the overall distance of the cluster, which is randomly placed at the start of the segmentation process. The segmentation results of this method give clear segments based on the different color and it can be applied to any application.

Keywords


cluster; computer vision; genetic algorithm; image segmentation;

Full Text:

PDF


DOI: http://doi.org/10.12928/telkomnika.v17i3.10072

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120
Fax: +62 274 564604

View TELKOMNIKA Stats