An implementation of novel genetic based clustering algorithm for color image segmentation
Varshali Jaiswal, Varsha Sharma, Sunita Varma
Abstract
The color image segmentation is one of most crucial application in image processing. It can apply to medical image segmentation for a brain tumor and skin cancer detection or color object detection on CCTV traffic video image segmentation and also for face recognition, fingerprint recognition etc. The color image segmentation has faced the problem of multidimensionality. The color image is considered in five-dimensional problems, three dimensions in color (RGB) and two dimensions in geometry (luminosity layer and chromaticity layer). In this paper the, L*a*b color space conversion has been used to reduce the one dimensional and geometrically it converts in the array hence the further one dimension has been reduced. The a*b space is clustered using genetic algorithm process, which minimizes the overall distance of the cluster, which is randomly placed at the start of the segmentation process. The segmentation results of this method give clear segments based on the different color and it can be applied to any application.
Keywords
cluster; computer vision; genetic algorithm; image segmentation;
DOI:
http://doi.org/10.12928/telkomnika.v17i3.10072
Refbacks
There are currently no refbacks.
This work is licensed under a
Creative Commons Attribution-ShareAlike 4.0 International License .
TELKOMNIKA Telecommunication, Computing, Electronics and Control ISSN: 1693-6930, e-ISSN: 2302-9293Universitas Ahmad Dahlan , 4th Campus Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191 Phone: +62 (274) 563515, 511830, 379418, 371120 Fax: +62 274 564604
<div class="statcounter"><a title="Web Analytics" href="http://statcounter.com/" target="_blank"><img class="statcounter" src="//c.statcounter.com/10241713/0/0b6069be/0/" alt="Web Analytics"></a></div> View TELKOMNIKA Stats