The Formation of Optimal Portfolio of Mutual Shares Funds using Multi-Objective Genetic Algorithm
Abstract
Investments in financial assets have become a trend in the globalization era, especially the investment in mutual fund shares. Investors who want to invest in stock mutual funds can set up an investment portfolio in order to generate a minimal risk and maximum return. In this study the authors used the Multi-Objective Genetic Algorithm Non-dominated Sorting II (MOGA NSGA-II) technique with the Markowitz portfolio principle to find the best portfolio from several mutual funds. The data used are 10 company stock mutual funds with a period of 12 months, 24 months and 36 months. The genetic algorithm parameters used are crossover probability of 0.65, mutation probability of 0.05, Generation 400 and a population numbering 20 individuals. The study produced a combination of the best portfolios for the period of 24 months with a computing time of 63,289 seconds.
Full Text:
PDFReferences
Utomo, Ponco. 2010. Peluang dan Tantangan Pertumbuhan Reksadana di Indonesia. Jakarta : PT. Minna Padi Aset Manajemen.
Musaroh. 2007. Kajian Perbandingan antara Reksa Dana Syariah dan Reksa Dana Konvensionalsebagai Solusi Alternatif Perencanaan Investasi. Jurnal Ilmu Manajemen. ISSN : 1693-7910.
Jogiyanto, H.M. 1998. Teori Portofolio dan Analisis Investasi Edisi Pertama. BPFE. Yogyakarta.
Deb K, Agrawal S, Pratap A, Meyarivan T. 2002. A Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective Optimization : NSGA-II. India : KanGAL Report No. 200001.
Palimo, Y. 2012. Perbandingan Efisiensi Teknikal Indikator Simple Moving Average dan Exponential Moving Average Pada Saham Pertambangan Batubara di Bursa Efek Indonesia. Jakarta : Universitas Gunadarma.
Markowitz, Harry. Portfolio Selection. The Journal of Finance, Vol. 7. No. 1, pp: 77-91. March 1952.
Tandelin, Eduardus. 2010. Portofolio dan Investasi. Yogyakarta : Penerbit Kanisius.
Ram Krishna Rathore, AmitSarda, Rituraj Chandrakar, An Approach to optimize ANN Meta model with Multi Objective Genetic Algorithm for multi-disciplinary shape optimization, International Journal of Soft Computing and Engineering (IJSCE) ISSN: 2231-2307, Volume-2, Issue-1, March 2012.
Austin, J.E. 1992. Agroindustrial Project Analysis; Critical Design Factors. EDI Series in Economic Development. Baltimore and London: The Johns Hopkins University Press.
LI Nan, et.al., Mechanism-parameters Design Method of an Amphibious Transformable Robot Based on Multi-objective Genetic Algorithm, Journal of Mechanical Engineering, Vol.48 No.17 Sep 2012.
Deb K, Beyer H.G : Self-Adaptation in Real-Parameter Genetic Algorithms with Simulated Binary Crossover. Genetic and Evolutionary Computation Conference (GECCO-99), Orlando, FL. (1999).
Bagchi, T.P., Multiobjective Scheduling by Genetic Algorithms, 1999 (Dordrecht, The Netherlands: Kluwer Academic Publishers).
Pinedo, M., Scheduling: Theory, Algorithms and Systems, 1995 (Englewood Cliffs, NJ: Prentice-Hall).
DOI: http://doi.org/10.12928/telkomnika.v11i3.1148
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120
Fax: +62 274 564604