A colour-based building recognition using support vector machine

Mas Rina Mustaffa, Loh Weng Yee, Lili Nurliyana Abdullah, Nurul Amelina Nasharuddin

Abstract


Many applications apply the concept of image recognition to help human in recognising objects simply by just using digital images. A content-based building recognition system could solve the problem of using just text as search input. In this paper, a building recognition system using colour histogram is proposed for recognising buildings in Ipoh city, Perak, Malaysia. The colour features of each building image will be extracted. A feature vector combining the mean, standard deviation, variance, skewness and kurtosis of gray level will be formed to represent each building image. These feature values are later used to train the system using supervised learning algorithm, which is Support Vector Machine (SVM). Lastly, the accuracy of the recognition system is evaluated using 10-fold cross validation. The evaluation results show that the building recognition system is well trained and able to effectively recognise the building images with low misclassification rate.

Keywords


10-fold cross validation; building; content-based; colour feature; support vector machine;

Full Text:

PDF


DOI: http://doi.org/10.12928/telkomnika.v17i1.11609

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120
Fax: +62 274 564604

View TELKOMNIKA Stats