Comparison of exponential smoothing and neural network method to forecast rice production in Indonesia
Gregorius Airlangga, Agatha Rachmat, Dodisutarma Lapihu
Abstract
Rice is the most important food commodity in Indonesia. In order to achieve affordability, and the fulfillment of the national food consumption according to the Indonesia law no. 18 of 2012, Indonesia needs information to support the government's policy regarding the collection, processing, analyzing, storing, presenting and disseminating. One manifestation of the Information availability to support the government’s policy is forecasting. Exponential smoothing and neural network methods are commonly used to forecasting because it provides a satisfactory result. Our study are comparing the variants of exponential and backpropagation model as a neural network to forecast rice production. The evaluation is summarized by utilizing Mean Square Percentage Error (MAPE), Mean Square Error (MSE). The results show that neural network method is preferable than the statistics method since it has lower MSE and MAPE values than statistics method.
Keywords
forecasting; neural network; rice production; statistics;
DOI:
http://doi.org/10.12928/telkomnika.v17i3.11768
Refbacks
There are currently no refbacks.
This work is licensed under a
Creative Commons Attribution-ShareAlike 4.0 International License .
TELKOMNIKA Telecommunication, Computing, Electronics and Control ISSN: 1693-6930, e-ISSN: 2302-9293Universitas Ahmad Dahlan , 4th Campus Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191 Phone: +62 (274) 563515, 511830, 379418, 371120 Fax: +62 274 564604
<div class="statcounter"><a title="Web Analytics" href="http://statcounter.com/" target="_blank"><img class="statcounter" src="//c.statcounter.com/10241713/0/0b6069be/0/" alt="Web Analytics"></a></div> View TELKOMNIKA Stats