Improved Harmony Search Algorithm with Chaos for Absolute Value Equation
Abstract
In this paper, an improved harmony search with chaos (HSCH) is presented for solving NP-hard absolute value equation (AVE) Ax - |x| = b, where A is an arbitrary square matrix whose singular values exceed one. The simulation results in solving some given AVE problems demonstrate that the HSCH algorithm is valid and outperforms the classical HS algorithm (HS) and HS algorithm with differential mutation operator (HSDE).
Full Text:
PDFReferences
Jiri Rohn. A Theorem of the Alternatives for the Equation Ax+B|x|=b. Linear and Multilinear Algebra, 2004,52 (6):421-426.
Mangasarian O.L. Absolute value programming. Computational Optimization and Aplications, 2007, 36(1): 43-53.
R. W. Cottle and G. Dantzig. Complementary pivot theory of mathematical programming. Linear Algebra and its Applications. 1968,1:103-125.
Mangasarian O.L., Meyer, R.R. Absolute value equations. Linear Algebra and its Applications, 2006, 419(5): 359-367.
Oleg Prokopyev. On equivalent reformulations for absolute value equations. Computational Optimization and Applications, 2009, 44(3): 363-372.
Shen-Long Hu, Zheng-Hai Huang. A note on absolute value equations. Optim. Lett.2010, 4(3): 417-424.
Mangasarian O.L. Absolute value equation solution via concave minimization. Optim. Lett. 2007, 1(1): 3-8.
Mangasarian O.L. A generlaized newton method for absolute value equations. Optim. Lett. 2009, 3(1): 101-108.
Mangasarian, O.L. Knapsack feasibility as an absolute value equation solvable by successive linear programming. Optim. Lett. 2009, 3(2):161-170.
C. Zhang,Q. J. Wei. Global and Finite Convergence of a Generalized Newton Method for Absolute Value Equations. Journal of Optimization Theory and Applications. 2009(143):391-403.
Louis Caccetta, Biao Qu, Guanglu Zhou. A globally and quadratically convergent method for absolute value equations. Computational Optimization and Applications. 2011, 48(1): 45-58.
Longquan Yong, Sanyang Liu, Shemin Zhang and Fang'an Deng. A New Method for Absolute Value Equations Based on Harmony Search Algorithm. ICIC Express Letters, Part B: Applications, 2011,2(6):1231-1236.
Longquan Yong, Shouheng Tuo. Quasi-Newton Method to Absolute Value Equations based on Aggregate Function. Journal of Systems Science and Mathematical Sciences,2012,32(11):1427-1436.
Longquan Yong, Sanyang Liu,Zhang Jian-ke,Chen Tao,Deng Fang-an. A New Feasible Interior Point Method to Absolute Value Equations.Journal of Jilin University (Science Edition), 2012, 50 (5):887-891.
Longquan Yong. An Iterative Method for Absolute Value Equations Problem. Information, 2013,16(1):7-12.
Geem Z W, Kim J H, Loganathan G V. A new heuristic optimization algorithm: harmony search. Simulation, 2001,76: 60-68.
Lee K S, Geem Z W. A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice. Computer Methods in Applied Mechanics and Engineering, 2005,194: 3902-3933.
Lakshmi Ravi, S.G. Bharathi dasan.PSO based Optimal Power Flow with Hybrid Distributed Generators and UPFC.Telkomnika,2012,10(3).
Andi Muhammad Ilyas, M. Natsir Rahman. Economic Dispatch Thermal Generator Using Modified Improved Particle Swarm Optimization.Telkomnika,2012,10(3): 459-470.
Osama Alia, Rajeswari Mandava.The variants of the harmony search algorithm: an overview. Artificial Intelligence Review, 2011,36: 49-68.
Swagatam Das, Arpan Mukhopadhyay, Anwit Roy, Ajith Abraham, Bijaya K. Panigrahi. Exploratory Power of the Harmony Search Algorithm: Analysis and Improvements for Global Numerical Optimization. IEEE Transactions On Systems, Man, and Cybernetics, Part B: Cybernetics, 2011,41:89-106.
Mohammed Azmi Al-Betar, Iyad Abu Doush, Ahamad Tajudin Khader, Mohammed A. Awadallah. Novel selection schemes for harmony search. Applied Mathematics and Computation, 2012, 218:6095-6117.
Shouheng Tuo, Longquan Yong. Improved Harmony Search Algorithm with Chaos.Journal of Computational Information Systems,2012,8 (10) : 4269- 4276.
Prithwish Chakraborty,Gourab Ghosh Roy, Swagatam Das, Dhaval Jain, Ajith Abraham. An Improved Harmony Search Algorithm with Differential Mutation Operator. Journal Fundamenta Informaticae, 2009, 95(4):401-426.
DOI: http://doi.org/10.12928/telkomnika.v11i4.1208
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120
Fax: +62 274 564604