Regression model focused on query for multi documents summarization based on significance of the sentence position
Aris Fanani, Yuniar Farida, Putra Prima Arhandi, M. Mahaputra Hidayat, Abdul Muhid, Billy Montolalu
Abstract
Document summarization is needed to get the information effectively and efficiently. One method used to obtain the document summarization by applying machine learning techniques. This paper proposes the application of regression models to query-focused multi-document summarization based on the significance of the sentence position. The method used is the Support Vector Regression (SVR) which estimates the weight of the sentence on a set of documents to be made as a summary based on sentence feature which has been defined previously. A series of evaluations performed on a data set of DUC 2005. From the test results obtained summary which has an average precision and recall values of 0.0580 and 0.0590 for measurements using ROUGE-2, ROUGE 0.0997 and 0.1019 for measurements using the proposed regression-SU4. Model can perform measurements of the significance of the position of the sentence in the document well.
Keywords
multi-document summarization; sentence position; support vector regresion;
DOI:
http://doi.org/10.12928/telkomnika.v17i6.12494
Refbacks
There are currently no refbacks.
This work is licensed under a
Creative Commons Attribution-ShareAlike 4.0 International License .
TELKOMNIKA Telecommunication, Computing, Electronics and Control ISSN: 1693-6930, e-ISSN: 2302-9293Universitas Ahmad Dahlan , 4th Campus Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191 Phone: +62 (274) 563515, 511830, 379418, 371120 Fax: +62 274 564604
<div class="statcounter"><a title="Web Analytics" href="http://statcounter.com/" target="_blank"><img class="statcounter" src="//c.statcounter.com/10241713/0/0b6069be/0/" alt="Web Analytics"></a></div> View TELKOMNIKA Stats