A Self-Adaptive Chaos Particle Swarm Optimization Algorithm
Yalin Wu, Shuiping Zhang
Abstract
As a new evolutionary algorithm, particle swarm optimization (PSO) achieves integrated evolution through the information between the individuals. All the particles have the ability to adjust their own speed and remember the optimal positions they have experienced. This algorithm has solved many practical engineering problems and achieved better optimization effect. However, PSO can easily get trapped in local extremum, making it fail to get the global optimal solution and reducing its convergence speed. To settle these deficiencies, this paper has proposed an adaptive chaos particle swarm optimization (ACPSO) based on the idea of chaos optimization after analyzing the basic principles of PSO. This algorithm can improve the population diversity and the ergodicity of particle search through the property of chaos; adjust the inertia weight according to the premature convergence of the population and the individual fitness; consider the global optimization and local optimization; effectively avoid premature convergence and improve algorithm efficiency. The experimental simulation has verified its effectiveness and superiority.
DOI:
http://doi.org/10.12928/telkomnika.v13i1.1267
Refbacks
There are currently no refbacks.
This work is licensed under a
Creative Commons Attribution-ShareAlike 4.0 International License .
TELKOMNIKA Telecommunication, Computing, Electronics and Control ISSN: 1693-6930, e-ISSN: 2302-9293Universitas Ahmad Dahlan , 4th Campus Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191 Phone: +62 (274) 563515, 511830, 379418, 371120 Fax: +62 274 564604
<div class="statcounter"><a title="Web Analytics" href="http://statcounter.com/" target="_blank"><img class="statcounter" src="//c.statcounter.com/10241713/0/0b6069be/0/" alt="Web Analytics"></a></div> View TELKOMNIKA Stats