A web/mobile decision support system to improve medical diagnosis using a combination of K-Mean and fuzzy logic
Zainab T. Al-Ars, Abbass Al-Bakry
Abstract
This research provides a system that integrates the work of data mining and expert system for different tasks in the process of medical diagnosis, and provides detailed steps to the process of reaching a diagnosis based on the described symptoms and mapping them with existing diagnosis available on the web or on a cloud of medical knowledge based, aggregate these data in a fuzzy manner and produce a satisfactory diagnosis of the persisting problem. The mobile phone interface would make the system user-friendly and provides mobility and accessibility to the user, while posting updates and reading in details the steps that led to the decision or diagnosis that is reached by the K-mean and the fuzzy logic inference engine. The achieved results indicate a promising diagnosis performance of the system as it achieved 90% accuracy and 92.9% F-Score.
Keywords
AI; communication; expert system; fuzzy logic; K-Mean clustering;
DOI:
http://doi.org/10.12928/telkomnika.v17i6.12715
Refbacks
There are currently no refbacks.
This work is licensed under a
Creative Commons Attribution-ShareAlike 4.0 International License .
TELKOMNIKA Telecommunication, Computing, Electronics and Control ISSN: 1693-6930, e-ISSN: 2302-9293Universitas Ahmad Dahlan , 4th Campus Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191 Phone: +62 (274) 563515, 511830, 379418, 371120 Fax: +62 274 564604
<div class="statcounter"><a title="Web Analytics" href="http://statcounter.com/" target="_blank"><img class="statcounter" src="//c.statcounter.com/10241713/0/0b6069be/0/" alt="Web Analytics"></a></div> View TELKOMNIKA Stats