Compression and encryption for ECG biomedical signal in healthcare system
Mustafa Emad Hameed, Masrullizam Mat Ibrahim, Nurulfajar Abd Manap
Abstract
The ECG data needs large memory storage device due to continuous heart rate logs and vital parameter storage. Thus, efficient compression schemes are applied to it before sending it to the telemedicine center for monitoring and analysis. Proper compression mechanisms can not only improve the storage efficiency but also help in faster porting of data from one device to another due to its compact size. Also, the collected ECG signals are processed through various filtering techniques to remove unnecessary noise and then compressed. In our scheme, we propose use of buffer blocks, which is quite novel in this field. Usage of highly efficient methods for peak detection, noise removal, compression and encryption enable seamless and secure transmission of ECG signal from sensor to the monitor. This work further makes use of AES 256 CBC mode, which is barely used in embedded devices, proves to be very strong and efficient in ciphering of the information. The PRD outcome of proposed work comes as 0.41% and CR as 0.35%, which is quite better than existing schemes. Experimental results prove the efficiency of proposed schemes on five distinct signal records from MIT-BIH arrhythmia datasets.
Keywords
CBC mode; compression; electrocardiogram; encryption; security;
DOI:
http://doi.org/10.12928/telkomnika.v17i6.13240
Refbacks
This work is licensed under a
Creative Commons Attribution-ShareAlike 4.0 International License .
TELKOMNIKA Telecommunication, Computing, Electronics and Control ISSN: 1693-6930, e-ISSN: 2302-9293Universitas Ahmad Dahlan , 4th Campus Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191 Phone: +62 (274) 563515, 511830, 379418, 371120 Fax: +62 274 564604
<div class="statcounter"><a title="Web Analytics" href="http://statcounter.com/" target="_blank"><img class="statcounter" src="//c.statcounter.com/10241713/0/0b6069be/0/" alt="Web Analytics"></a></div> View TELKOMNIKA Stats