Integrating millimeter wave with hybrid precoding multiuser massive MIMO for 5G communication

Mohammed Khudhur Hussein, Nasser N. Khamiss

Abstract


Nowadays, there has been growing interest in the Massive MIMO as a result of improving throughput by leveraging spatial freedom and array gain. It is equipped with millimeter wave (mm Wave) bands to resolve the high path-loss. It is known from the literature that iterated algorithms are usually used to attain the hybrid precoders to accomplish a specific optimization objective. Thus, the complexity remains high because each iteration may include singular value decomposition, the matrix inversion, and so on that motivates us to split the hybrid precoding and combining problem into sub-problems. The proposed solution is a multi-user Massive MIMO hybrid beamforming based on a convex optimization problem that is applied and solved for estimating the digital precoding to eliminate inter-user interference while using codebooks to select analog beamformers. It is apparent in the majority of cases; the proposed beamforming performance is higher than only-analog beamforming, single-user (no interference), the ZF precoding, the MMSE precoding, and the Kalman precoding where the full digital solution is a considerable as the benchmark point with different scenarios due to the reduction of user interference. Thus, there is no consideration for complicated operations such as SVD or inversion matrices as well as no need for data estimation. Our proposed solution can serve a large number of users simultaneously due to more directive gain by using numerous antennas at BS. Based on its less complexity and keeping performance, our solution can be recommended.

Keywords


convex optimization; hybrid precoding; millimeter wave (mm Wave); multi-user massive MIMO;

Full Text:

PDF


DOI: http://doi.org/10.12928/telkomnika.v18i1.13674

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120
Fax: +62 274 564604

View TELKOMNIKA Stats