Kernal based speaker specific feature extraction and its applications in iTaukei cross language speaker recognition

Satyanand Singh, Pragya Singh

Abstract


Extraction and classification algorithms based on kernel nonlinear features are popular in the new direction of research in machine learning. This research paper considers their practical application in the iTaukei automatic speaker recognition system (ASR) for cross-language speech recognition. Second, nonlinear speaker-specific extraction methods such as kernel principal component analysis (KPCA), kernel independent component analysis (KICA), and kernel linear discriminant analysis (KLDA) are summarized. The conversion effects on subsequent classifications were tested in conjunction with Gaussian mixture modeling (GMM) learning algorithms; in most cases, computations were found to have a beneficial effect on classification performance. Additionally, the best results were achieved by the Kernel linear discriminant analysis (KLDA) algorithm. The performance of the ASR system is evaluated for clear speech to a wide range of speech quality using ATR Japanese C language corpus and self-recorded iTaukei corpus. The ASR efficiency of KLDA, KICA, and KLDA technique for 6 sec of ATR Japanese C language corpus 99.7%, 99.6%, and 99.1% and equal error rate (EER) are 1.95%, 2.31%, and 3.41% respectively. The EER improvement of the KLDA technique-based ASR system compared with KICA and KPCA is 4.25% and 8.51% respectively.


Keywords


automatic speaker recognition system; kernel independent component analysis; kernel linear discriminant analysis; kernel principal component analysis; principal component analysis;

Full Text:

PDF


DOI: http://doi.org/10.12928/telkomnika.v18i5.14655

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120
Fax: +62 274 564604

View TELKOMNIKA Stats