Algorithm performance comparison for earthquake signal recognition on smartphone’s accelerometer

Hapsoro Agung Nugroho, Haryas Subyantara Wicaksana, Hariyanto Hariyanto, Rista H. Virgianto

Abstract


Micro-electro-mechanical-system accelerometer is able to detect acceleration signal caused by earthquake. Such type of accelerometer is also used by smartphones. There are few algorithms that can be used to recognize the type of acceleration signal from smartphone. This study aims to find signal recognition algorithm in order to consider the most proper algorithm for earthquake signal detection. The initial stage of designing the recognizer is data collection for each type of signal classification. The next step is to apply a highpass filter to separate the signals collected from the gravitational acceleration signal. The signal is divided into several segments. The system will extract features of each signal segment in the time and frequency domain. Each signal segment is then classified according to the type of signal using the classifier through a series of training data processes. The classifier which has the highest accuracy value is exported into the new input signal modeling. As the result, fine K-NN algorithm has the highest level of accuracy in the classification. The fine K-NN algorithm has an accuracy rate of 99.75% in the classification of human activity signals and earthquake signals with a memory capacity of 6,044 kilobytes and processing time of 15.93 seconds. This algorithm has the best classifier criteria compared to decision tree, support vector machine and linear discriminant analysis algorithms.


Keywords


accelerometer; earthquakes; human activity; K-NN algorithm; signal recognition;

Full Text:

PDF


DOI: http://doi.org/10.12928/telkomnika.v18i5.14708

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120
Fax: +62 274 564604

View TELKOMNIKA Stats