Deep hypersphere embedding for real-time face recognition

Ryann Alimuin, Elmer Dadios, Jonathan Dayao, Shearyl Arenas

Abstract


With the advancement of human-computer interaction capabilities of robots, computer vision surveillance systems involving security yields a large impact in the research industry by helping in digitalization of certain security processes. Recognizing a face in the computer vision involves identification and classification of which faces belongs to the same person by means of comparing face embedding vectors. In an organization that has a large and diverse labelled dataset on a large number of epoch, oftentimes, creates a training difficulties involving incompatibility in different versions of face embedding that leads to poor face recognition accuracy. In this paper, we will design and implement robotic vision security surveillance system incorporating hybrid combination of MTCNN for face detection, and FaceNet as the unified embedding for face recognition and clustering.

Keywords


deep hypersphere embedding; real-time face detection; real-time face recognition; robotic visions; security surveillance system;

Full Text:

PDF


DOI: http://doi.org/10.12928/telkomnika.v18i3.14787

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120
Fax: +62 274 564604

View TELKOMNIKA Stats