Radial basis function neural network control for parallel spatial robot

Nguyen Hong Quang, Nguyen Van Quyen, Nguyen Nhu Hien

Abstract


The derivation of motion equations of constrained spatial multibody system is an important problem of dynamics and control of parallel robots. The paper firstly presents an overview of the calculating the torque of the driving stages of the parallel robots using Kronecker product. The main content of this paper is to derive the inverse dynamics controllers based on the radial basis function (RBF) neural network control law for parallel robot manipulators. Finally,  numerical simulation of the inverse dynamics controller for a 3-RRR delta robot manipulator is presented as an illustrative example.

Keywords


inverse dynamics controller; kronecker product; numerical simulation; parallel robot manipulator; RBF neural network control;

Full Text:

PDF


DOI: http://doi.org/10.12928/telkomnika.v18i6.14913

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120
Fax: +62 274 564604

View TELKOMNIKA Stats