Integrated bio-search approaches with multi-objective algorithms for optimization and classification problem
Mohammad Aizat Basir, Mohamed Saifullah Hussin, Yuhanis Yusof
Abstract
Optimal selection of features is very difficult and crucial to achieve, particularly for the task of classification. It is due to the traditional method of selecting features that function independently and generated the collection of irrelevant features, which therefore affects the quality of the accuracy of the classification. The goal of this paper is to leverage the potential of bio-inspired search algorithms, together with wrapper, in optimizing multi-objective algorithms, namely ENORA and NSGA-II to generate an optimal set of features. The main steps are to idealize the combination of ENORA and NSGA-II with suitable bio-search algorithms where multiple subset generation has been implemented. The next step is to validate the optimum feature set by conducting a subset evaluation. Eight (8) comparison datasets of various sizes have been deliberately selected to be checked. Results shown that the ideal combination of multi-objective algorithms, namely ENORA and NSGA-II, with the selected bio-inspired search algorithm is promising to achieve a better optimal solution (i.e. a best features with higher classification accuracy) for the selected datasets. This discovery implies that the ability of bio-inspired wrapper/filtered system algorithms will boost the efficiency of ENORA and NSGA-II for the task of selecting and classifying features.
Keywords
bio-inspired; classification; ENORA; feature selection; NSGA-II;
DOI:
http://doi.org/10.12928/telkomnika.v18i5.15141
Refbacks
There are currently no refbacks.
This work is licensed under a
Creative Commons Attribution-ShareAlike 4.0 International License .
TELKOMNIKA Telecommunication, Computing, Electronics and Control ISSN: 1693-6930, e-ISSN: 2302-9293Universitas Ahmad Dahlan , 4th Campus Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191 Phone: +62 (274) 563515, 511830, 379418, 371120 Fax: +62 274 564604
<div class="statcounter"><a title="Web Analytics" href="http://statcounter.com/" target="_blank"><img class="statcounter" src="//c.statcounter.com/10241713/0/0b6069be/0/" alt="Web Analytics"></a></div> View TELKOMNIKA Stats