A maximum entropy classification scheme for phishing detection using parsimonious features

Emmanuel O. Asani, Adebayo Omotosho, Paul A. Danquah, Joyce A. Ayoola, Peace O. Ayegba, Olumide B. Longe

Abstract


Over the years, electronic mail (e-mail) has been the target of several malicious attacks. Phishing is one of the most recognizable forms of manipulation aimed at e-mail users and usually, employs social engineering to trick innocent users into supplying sensitive information into an imposter website. Attacks from phishing emails can result in the exposure of confidential information, financial loss, data misuse, and others. This paper presents the implementation of a maximum entropy (ME) classification method for an efficient approach to the identification of phishing emails. Our result showed that maximum entropy with parsimonious feature space gives a better classification precision than both the Naïve Bayes and support vector machine (SVM).

Keywords


classification; parsimonous features; phishing; social engineering;

Full Text:

PDF


DOI: http://doi.org/10.12928/telkomnika.v19i5.15981

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120
Fax: +62 274 564604

View TELKOMNIKA Stats