Mobile learning architecture using fog computing and adaptive data streaming

Shymaa Mohammed Jameel, Muayad Sadik Croock

Abstract


With the huge development in mobile and network fields, sensor technologies and fog computing help the students for more effective learning, flexible and in and effective manner from anywhere. Using the mobile device for learn encourage the transition to mobile computing (cloud and fog computing) which is led to the ability to design customized system that help student to learn via context aware learning which can be done by set the user preference and use proper methods to show only related manner subject. The presented study works on developing a system of e-learning which has been on the basis of fog computing concepts with deep learning approaches utilized for classification to the data content for accomplishing the context aware learning and use the adaptation of video quality using special equation and the data encrypted and decrypted using 3DES algorithm to ensure the security side of the operation.

Keywords


CNN; data streaming; deep learning; mobile learning;

Full Text:

PDF


DOI: http://doi.org/10.12928/telkomnika.v18i5.16712

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120
Fax: +62 274 564604

View TELKOMNIKA Stats