The convolutional neural networks for Amazigh speech recognition system

Meryam Telmem, Youssef Ghanou

Abstract


In this paper, we present an approach based on convolutional neural networks to build an automatic speech recognition system for the Amazigh language. This system is built with TensorFlow and uses mel frequency cepstral coefficient (MFCC) to extract features. In order to test the effect of the speaker's gender and age on the accuracy of the model, the system was trained and tested on several datasets. The first experiment the dataset consists of 9240 audio files. The second experiment the dataset consists of 9240 audio files distributed between females and males’ speakers. The last experiment 3 the dataset consists of 13860 audio files distributed between age 9-15, age 16-30, and age 30+. The result shows that the model trained on a dataset of adult speaker’s age +30 categories generates the best accuracy with 93.9%.


Keywords


Amazigh language; convolutional neural network; deep learning; mel frequency cepstral coefficient; spectrogram; speech recognition;

Full Text:

PDF


DOI: http://doi.org/10.12928/telkomnika.v19i2.16793

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120
Fax: +62 274 564604

View TELKOMNIKA Stats