R-L-MS-L Filter Function for CT Image Reconstruction
Huiling Hou, Mingquan Wang, Xiaopeng Wang
Abstract
In X-ray computer tomography (CT), convolution back projection is a fundamental algorithm for CT image reconstruction. As filtering plays an important part in convolution back projection, the choice of filter has a direct impact upon the quality of reconstructed images. Aim at improving reconstructed image quality, a new mixed filter based on the idea of “first weighted average then linear mixing” is designed in this article, denoted by R-L-MS-L. Here, R-L filter is relied on to guarantee the spatial resolution of reconstructed image and S-L filter is processed via 3-point weighted averaging to improve the density resolution, thus enhancing the overall reconstruction quality. Gaussian noise of different coefficients is added to the projection data to contrast the noise performance of the new and traditional mixed filters. The simulation and experiment results show that the new filter is better in anti-noise performance and produces reconstructed images with notably improved quality.
Keywords
CT image reconstruction; convolution back projection; filter function
DOI:
http://doi.org/10.12928/telkomnika.v14i1.1831
Refbacks
There are currently no refbacks.
This work is licensed under a
Creative Commons Attribution-ShareAlike 4.0 International License .
TELKOMNIKA Telecommunication, Computing, Electronics and Control ISSN: 1693-6930, e-ISSN: 2302-9293Universitas Ahmad Dahlan , 4th Campus Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191 Phone: +62 (274) 563515, 511830, 379418, 371120 Fax: +62 274 564604
<div class="statcounter"><a title="Web Analytics" href="http://statcounter.com/" target="_blank"><img class="statcounter" src="//c.statcounter.com/10241713/0/0b6069be/0/" alt="Web Analytics"></a></div> View TELKOMNIKA Stats