An ensemble based approach for effective intrusion detection using majority voting

Alwi M. Bamhdi, Iram Abrar, Faheem Masoodi

Abstract


Of late, Network Security Research is taking center stage given the vulnerability of computing ecosystem with networking systems increasingly falling to hackers. On the network security canvas, Intrusion detection system (IDS) is an essential tool used for timely detection of cyber-attacks. A designated set of reliable safety has been put in place to check any severe damage to the network and the user base. Machine learning (ML) is being frequently used to detect intrusion owing to their understanding of intrusion detection systems in minimizing security threats. However, several single classifiers have their limitation and pose challenges to the development of effective IDS. In this backdrop, an ensemble approach has been proposed in current work to tackle the issues of single classifiers and accordingly, a highly scalable and constructive majority voting-based ensemble model was proposed which can be employed in real-time for successfully scrutinizing the network traffic to proactively warn about the possibility of attacks. By taking into consideration the properties of existing machine learning algorithms, an effective model was developed and accordingly, an accuracy of 99%, 97.2%, 97.2%, and 93.2% were obtained for DoS, Probe, R2L, and U2R attacks and thus, the proposed model is effective for identifying intrusion.

Keywords


DoS; ensemble; intrusion detection system; majority voting; multi-layer perceptron; particle swarm optimization;

Full Text:

PDF


DOI: http://doi.org/10.12928/telkomnika.v19i2.18325

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120
Fax: +62 274 564604

View TELKOMNIKA Stats