Suport visual details of X-ray image with plain information
Nashwan Jasim Hussein, Sabah Khudhair Abbas
Abstract
The objective of content-based image retrival (CBIR) is to retrieve relevant medical images from the medical database with reference to the query image in a shorter span of time. All the proposed approaches are different, yet the research goal is to attain better accuracy in a reasonable amount of time. The initial phase of this research presents a feature selection technique that aims to improvise the medical image diagnosis by selecting prominent features. The second phase of the research extracts features and the association rules are formed by the proposed classification based on highly strong association rules (CHiSAR). Finally, the rule subset classifier is employed to classify between the images. The last pert of our work extracts the features from the kidney images and the association rules are reduced for better performance. The image relevance inference is performed and finally, binary and the best first search classification is employed to classify between the images.
Keywords
feature extraction; image analysis; image enhancement; medical image; tumor classification;
DOI:
http://doi.org/10.12928/telkomnika.v19i6.21592
Refbacks
There are currently no refbacks.
This work is licensed under a
Creative Commons Attribution-ShareAlike 4.0 International License .
TELKOMNIKA Telecommunication, Computing, Electronics and Control ISSN: 1693-6930, e-ISSN: 2302-9293Universitas Ahmad Dahlan , 4th Campus Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191 Phone: +62 (274) 563515, 511830, 379418, 371120 Fax: +62 274 564604
<div class="statcounter"><a title="Web Analytics" href="http://statcounter.com/" target="_blank"><img class="statcounter" src="//c.statcounter.com/10241713/0/0b6069be/0/" alt="Web Analytics"></a></div> View TELKOMNIKA Stats