Adaptive segmentation algorithm based on level set model in medical imaging

Boualem Mansouri, Abdelkader Khobzaoui, Mehdi Damou, Mohammed Chetioui, Abdelhakim Boudkhil

Abstract


For image segmentation, level set models are frequently employed. It offer best solution to overcome the main limitations of deformable parametric models. However, the challenge when applying those models in medical images stills deal with removing blurs in image edges which directly affects the edge indicator function, leads to not adaptively segmenting images and causes a wrong analysis of pathologies wich prevents to conclude a correct diagnosis. To overcome such issues, an effective process is suggested by simultaneously modelling and solving systems’ two-dimensional partial differential equations (PDE). The first PDE equation allows restoration using Euler’s equation similar to an anisotropic smoothing based on a regularized Perona and Malik filter that eliminates noise while preserving edge information in accordance with detected contours in the second equation that segments the image based on the first equation solutions. This approach allows developing a new algorithm which overcome the studied model drawbacks. Results of the proposed method give clear segments that can be applied to any application. Experiments on many medical images in particular blurry images with high information losses, demonstrate that the developed approach produces superior segmentation results in terms of quantity and quality compared to other models already presented in previeous works.


Keywords


active contour; anisotropic diffusion; euler’s equation; medical image segmentation; variational level set;

Full Text:

PDF


DOI: http://doi.org/10.12928/telkomnika.v21i5.22365

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120
Fax: +62 274 564604

View TELKOMNIKA Stats