A stochastic algorithm for solving the posterior inference problem in topic models
Hoang Quang Trung, Xuan Bui
Abstract
Latent Dirichlet allocation (LDA) is an important probabilistic generative model and has usually used in many domains such as text mining, retrieving information, or natural language processing domains. The posterior inference is the important problem in deciding the quality of the LDA model, but it is usually non-deterministic polynomial (NP)-hard and often intractable, especially in the worst case. For individual texts, some proposed methods such as variational Bayesian (VB), collapsed variational Bayesian (CVB), collapsed Gibb’s sampling (CGS), and online maximum a posteriori estimation (OPE) to avoid solving this problem directly, but they usually do not have any guarantee of convergence rate or quality of learned models excepting variants of OPE. Based on OPE and using the Bernoulli distribution combined, we design an algorithm namely general online maximum a posteriori estimation using two stochastic bounds (GOPE2) for solving the posterior inference problem in LDA model. It also is the NP-hard non-convex optimization problem. Via proof of theory and experimental results on the large datasets, we realize that GOPE2 is performed to develop the efficient method for learning topic models from big text collections especially massive/streaming texts, and more efficient than previous methods.
Keywords
latent Dirichlet allocation; posterior inference; stochastic optimization; topic models;
DOI:
http://doi.org/10.12928/telkomnika.v20i5.23764
Refbacks
There are currently no refbacks.
This work is licensed under a
Creative Commons Attribution-ShareAlike 4.0 International License .
TELKOMNIKA Telecommunication, Computing, Electronics and Control ISSN: 1693-6930, e-ISSN: 2302-9293Universitas Ahmad Dahlan , 4th Campus Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191 Phone: +62 (274) 563515, 511830, 379418, 371120 Fax: +62 274 564604
<div class="statcounter"><a title="Web Analytics" href="http://statcounter.com/" target="_blank"><img class="statcounter" src="//c.statcounter.com/10241713/0/0b6069be/0/" alt="Web Analytics"></a></div> View TELKOMNIKA Stats