Real-time human activity recognition from smart phone using linear support vector machines

Kamel Maaloul, Lejdel Brahim, Nedioui Med Abdelhamid

Abstract


The recognition of human activity (HAR) the use of cell devices embedded in its exten sively disbursed sensors affords guidance, instructions, and take care of citizens of smart cities. Consequently, it became essential to analyze human every day sports. To examine statistical models of human conduct, synthetic intelligence strategies such as machine studying can be used. Many studies have not studied type overall performance in real-time due to statistics series. To remedy this trouble, this paper proposes a structure primarily based on open supply technology and platforms consisting of Apache Kafka, for messages to flow over the internet, method them and provide shape for existing facts in real-time and formulates the trouble of identifying human pastime by using a smartphone tool as a type hassle using statistics collection by telephone sensors. The proposed version is skilled by some machine learning algorithms. The algorithm that has proven superior and quality results helps a linear vector machines.


Keywords


Apache Kafka; HAR; linear support vector machine; machine learning; real-time; support vector machines;

Full Text:

PDF


DOI: http://doi.org/10.12928/telkomnika.v21i3.24100

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120
Fax: +62 274 564604

View TELKOMNIKA Stats