A comparison of different support vector machine kernels for artificial speech detection
Choon Beng Tan, Mohd Hanafi Ahmad Hijazi, Puteri Nor Ellyza Nohuddin
Abstract
As the emergence of the voice biometric provides enhanced security and convenience, voice biometric-based applications such as speaker verification were gradually replacing the authentication techniques that were less secure. However, the automatic speaker verification (ASV) systems were exposed to spoofing attacks, especially artificial speech attacks that can be generated with a large amount in a short period of time using state-of-the-art speech synthesis and voice conversion algorithms. Despite the extensively used support vector machine (SVM) in recent works, there were none of the studies shown to investigate the performance of different SVM settings against artificial speech detection. In this paper, the performance of different SVM settings in artificial speech detection will be investigated. The objective is to identify the appropriate SVM kernels for artificial speech detection. An experiment was conducted to find the appropriate combination of the proposed features and SVM kernels. Experimental results showed that the polynomial kernel was able to detect artificial speech effectively, with an equal error rate (EER) of 1.42% when applied to the presented handcrafted features.
Keywords
artificial speech; artificial speech detection; support vector machine;
DOI:
http://doi.org/10.12928/telkomnika.v21i1.24259
Refbacks
There are currently no refbacks.
This work is licensed under a
Creative Commons Attribution-ShareAlike 4.0 International License .
TELKOMNIKA Telecommunication, Computing, Electronics and Control ISSN: 1693-6930, e-ISSN: 2302-9293Universitas Ahmad Dahlan , 4th Campus Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191 Phone: +62 (274) 563515, 511830, 379418, 371120 Fax: +62 274 564604
<div class="statcounter"><a title="Web Analytics" href="http://statcounter.com/" target="_blank"><img class="statcounter" src="//c.statcounter.com/10241713/0/0b6069be/0/" alt="Web Analytics"></a></div> View TELKOMNIKA Stats