A progressive learning for structural tolerance online sequential extreme learning machine

Sarutte Atsawaraungsuk, Wasaya Boonphairote, Kritsanapong Somsuk, Chanwit Suwannapong, Suchart Khummanee

Abstract


This article discusses the progressive learning for structural tolerance online sequential extreme learning machine (PSTOS-ELM). PSTOS-ELM can save robust accuracy while updating the new data and the new class data on the online training situation. The robustness accuracy arises from using the householder block exact QR decomposition recursive least squares (HBQRD-RLS) of the PSTOS-ELM. This method is suitable for applications that have data streaming and often have new class data. Our experiment compares the PSTOS-ELM accuracy and accuracy robustness while data is updating with the batch-extreme learning machine (ELM) and structural tolerance online sequential extreme learning machine (STOS-ELM) that both must retrain the data in a new class data case. The experimental results show that PSTOS-ELM has accuracy and robustness comparable to ELM and STOS-ELM while also can update new class data immediately.

Keywords


extreme learning machine; progressive learning; sequential learning; stable sequential learning;

Full Text:

PDF


DOI: http://doi.org/10.12928/telkomnika.v21i5.24564

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120
Fax: +62 274 564604

View TELKOMNIKA Stats