Identification of Tuna and Mackerel based on DNA Barcodes using Support Vector Machine
Mulyati Mulyati, Wisnu Ananta Kusuma, Mala Nurilmala
Abstract
Tuna and mackerel are important fish in Indonesia that have great demand in the community and contain good nutrients for health. Many of the processed products have been faked including processed fish, by replacing the content of products that have high sales value to other lower price one. For ensuring food safety, fraudulent should be prevented by identifying the content of refined product. In this research, we implemented support vector machine (SVM), one of the popular methods in machine learning, to yield a model for identifying the content of refined product based on DNA barcode sequences. The feature extraction of DNA barcode Sequences was conducted by calculating k-mers frequency of each sequences. In this study, we used trinucleotide (3-mers) and tetranucleotide (4-mers). These features were inputted to SVM to classify and identify whether the DNA barcode sequences belong to the class of tuna, mackerel, or other fish. The evaluation results showed model SVM was able to perform identification with the accuracy 88%.
Keywords
DNA Barcode, food safety, machine learning, support vector machine
DOI:
http://doi.org/10.12928/telkomnika.v14i2.2469
Refbacks
There are currently no refbacks.
This work is licensed under a
Creative Commons Attribution-ShareAlike 4.0 International License .
TELKOMNIKA Telecommunication, Computing, Electronics and Control ISSN: 1693-6930, e-ISSN: 2302-9293Universitas Ahmad Dahlan , 4th Campus Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191 Phone: +62 (274) 563515, 511830, 379418, 371120 Fax: +62 274 564604
<div class="statcounter"><a title="Web Analytics" href="http://statcounter.com/" target="_blank"><img class="statcounter" src="//c.statcounter.com/10241713/0/0b6069be/0/" alt="Web Analytics"></a></div> View TELKOMNIKA Stats