Impact of CuS counter electrode calcination temperature on quantum dot sensitized solar cell performance

Le Thi Ngoc Tu, Ha Thanh Tung

Abstract


In place of the commercial Pt electrode used in quantum sensitized solar cells, the low-cost CuS cathode is created using electrophoresis. High resolution scanning electron microscopy and X-ray diffraction were used to analyze the structure and morphology of structural cubic samples with diameters ranging from 40 nm to 200 nm. The conversion efficiency of solar cells is significantly impacted by the calcination temperatures of cathodes at 100 °C, 120 °C, 150 °C, and 180 °C under vacuum. The fluorine doped tin oxide (FTO)/CuS cathode electrode reached a maximum efficiency of 3.89% when it was calcined at 120 °C. Compared to other temperature combinations, CuS nanoparticles crystallize at 120 °C, which lowers resistance while increasing electron lifetime. In place of the commercial Pt electrode used in quantum sensitized solar cells, the low-cost CuS cathode is created using electrophoresis. High resolution scanning electron microscopy and X-ray diffraction were used to analyze the structure and morphology of structural cubic samples with diameters ranging from 40 nm to 200 nm. The conversion efficiency of solar cells is significantly impacted by the calcination temperatures of cathodes at 100 °C, 120 °C, 150 °C, and 180 °C under vacuum. The fluorine doped tin oxide (FTO)/CuS cathode electrode reached a maximum efficiency of 3.89% when it was calcined at 120 °C. Compared to other temperature combinations, CuS nanoparticles crystallize at 120 °C, which lowers resistance while increasing electron lifetime.

Keywords


CuS counter electrode; electrochemistry property; structure property;

Full Text:

PDF


DOI: http://doi.org/10.12928/telkomnika.v21i5.25118

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120
Fax: +62 274 564604

View TELKOMNIKA Stats