Moving-horizon estimation approach for nonlinear systems with measurement contaminated by outliers
Moath Jamal Awawdeh, Tarig Faisal, Anees Bashir, Abdel Ilah Nour Alshbatat, Rana T. H. Momani
Abstract
An application of moving-horizon strategy for nonlinear systems with possible outliers in measurements is addressed. With the increased success of movinghorizon strategy in the state estimation for linear systems with outliers acting on the measurement, investigating the nonlinear approach is highly required. In this paper we applied the nonlinear version which has been presented in the literature in term of discrete-time linear time-invariant systems, where the applied strategy considers minimizing a least-squares functions in which each measure possibly contaminated by outlier is left out in turn and the lowest cost is propagated. The moving horizon filter effectiveness as compared with the extended Kalman filter is shown by means of simulation example and estimation error comparison. The moving horizon filter shows the feature of resisting outliers with robust estimation
Keywords
moving horizon estimation; nonlinear moving horizon estimation; outliers; state estimation; uncertainity;
DOI:
http://doi.org/10.12928/telkomnika.v22i1.25230
Refbacks
There are currently no refbacks.
This work is licensed under a
Creative Commons Attribution-ShareAlike 4.0 International License .
TELKOMNIKA Telecommunication, Computing, Electronics and Control ISSN: 1693-6930, e-ISSN: 2302-9293Universitas Ahmad Dahlan , 4th Campus Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191 Phone: +62 (274) 563515, 511830, 379418, 371120 Fax: +62 274 564604
<div class="statcounter"><a title="Web Analytics" href="http://statcounter.com/" target="_blank"><img class="statcounter" src="//c.statcounter.com/10241713/0/0b6069be/0/" alt="Web Analytics"></a></div> View TELKOMNIKA Stats