Classification of grapevine leaves images using VGG-16 and VGG-19 deep learning nets

Maha A. Rajab, Firas A. Abdullatif, Tole Sutikno

Abstract


The successful implementation of deep learning nets opens up possibilities for various applications in viticulture, including disease detection, plant health monitoring, and grapevine variety identification. With the progressive advancements in the domain of deep learning, further advancements and refinements in the models and datasets can be expected, potentially leading to even more accurate and efficient classification systems for grapevine leaves and beyond. Overall, this research provides valuable insights into the potential of deep learning for agricultural applications and paves the way for future studies in this domain. This work employs a convolutional neural network (CNN)-based architecture to perform grapevine leaf image classification by adapting VGG-16 net and VGG-19 net models and subsequently identifying the optimal performer between the two nets during the classification process. A publicly available dataset comprising 500 images categorized into 5 distinct classes (100 images per class), was utilized in this work. The obtained empirical outcomes demonstrate a remarkable accuracy rate of 99.6% for the VGG-16 net model, while VGG-19 net achieves a 100% accuracy rate. Based on these findings, it can be inferred that VGG-19 net exhibits superior performance in classifying images of grapevine leaves compared to the VGG-16 net.

Keywords


classification; convolutional neural network; deep learning; VGG-16; VGG-19;

Full Text:

PDF


DOI: http://doi.org/10.12928/telkomnika.v22i2.25840

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120
Fax: +62 274 564604

View TELKOMNIKA Stats