Imputation missing value to overcome sparsity problems

RZ Abdul Aziz, Sri Lestari, Fitria Fitria, Febri Arianto

Abstract


Collaborative filtering (CF) is a method to be used in recommendation systems. CF works by analyzing rating data patterns from previous users to produce recommendations according to their interests. However, it faces a crucial problem, sparsity, a condition where a lot of data is empty, which will affect the quality of the recommendations produced. To state this problem, the purpose of this study is to input methods including mean, min, max, and k-nearest neighbor imputation (KNNI). The steps taken include imputation of empty data, followed by similarity calculations using the cosin similarity method, and evaluation using root mean square error (RMSE). The experimental result shows that the mean method is excellent with an average similarity value of 0.99 and an RMSE value of 0.98.

Keywords


collaborative filtering; cosine similariy; imputation missing value; recommendation system; sparsity;

Full Text:

PDF


DOI: http://doi.org/10.12928/telkomnika.v22i4.25940

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120
Fax: +62 274 564604

View TELKOMNIKA Stats