Volterra Series identification Based on State Transition Algorithm with Orthogonal Transformation

Cong Wang, Hong-Li Zhang, Wen-hui Fan

Abstract


A Volterra kernel identification method based on state transition algorithm with orthogonal transformation (called OTSTA) was proposed to solve the hard problem in identifying Volterra kernels of nonlinear systems. Firstly, the population with chaotic sequences was initialized by using chaotic strategy. Then the orthogonal transformation was used to finish the mutation operator of the selected individual. OTSTA was used on the identification of Volterra series, and compared with particle swarm optimization (called PSO) and state transition algorithm (STA). The simulation results showed that OTSTA has better identification precision and convergence than PSO and STA under non-noise interference. And when there is noise, the identification precision, convergence and anti-interference of OTSTA are also superior to PSO and STA.


Keywords


State Translation Algorithm; Orthogonal Transformation; Nonlinear System; Volterra Series; System Identification

Full Text:

PDF


DOI: http://doi.org/10.12928/telkomnika.v14i1.2663

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120
Fax: +62 274 564604

View TELKOMNIKA Stats