Deep transfer learning based disease detection and classification of tomato leaves - a comparative analysis
Munira Akter Lata, Marjia Sultana, Iffat Ara Badhan, Mastura Jahan Maria, Fariha Tasnim Nuha
Abstract
A wide variety of diseases have a significant impact on tomato plants. To avoid crop quality issues, a prompt and precise diagnosis is crucial. Classifying plant diseases is one of the numerous applications where deep transfer learning models have recently produced remarkable results. This study dealt with fine-tuning by contrasting the most advanced architectures, including Inception V3, ResNet-18, ResNet-50, VGG-16, VGG-19, GoogLeNet, and AlexNet. In the end, a comparison evaluation is conducted. Nine distinct tomato disease classes and one healthy class from PlantVillage make up the dataset used in this study. Precision, recall, F1-score, and accuracy were the basis for a multiclass statistical analysis that assessed the models. The ResNet-50 approach yielded significant results with precision: 82%, recall: 81%, F1-score: 81%, and accuracy: 85%. With this high success rate, it is reasonable to say that mobile applications or IoT-compatible gadgets implemented with the ResNet-50 model can assist farmers in identifying and safeguarding tomatoes against the aforementioned diseases.
Keywords
classification; deep transfer learning; image processing; occlusion sensitivity; tomato leaf diseases;
DOI:
http://doi.org/10.12928/telkomnika.v23i5.26887
Refbacks
There are currently no refbacks.
This work is licensed under a
Creative Commons Attribution-ShareAlike 4.0 International License .
TELKOMNIKA Telecommunication, Computing, Electronics and Control ISSN: 1693-6930 , e-ISSN: 2302-9293 Universitas Ahmad Dahlan , 4th Campus Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191 Phone: +62 (274) 563515, 511830, 379418, 371120 Fax: +62 274 564604
<div class="statcounter"><a title="Web Analytics" href="http://statcounter.com/" target="_blank"><img class="statcounter" src="//c.statcounter.com/10241713/0/0b6069be/0/" alt="Web Analytics"></a></div> View TELKOMNIKA Stats